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Abstract— Validating appropriateness and naturalness of
human-robot interaction (HRI) is commonly performed by
taking subjective measures from human interaction partners,
e.g. questionnaire ratings. Although these measures can be of
high value for robot designers, they are very sensitive and can be
inaccurate and/or biased. In this paper we propose and validate
a neuro-based method for objectively validating robot behavior
in HRI. We propose to detect from the electronencephalo-
gram (EEG) of a human interaction partner, the perception
of inappropriate / unexpected / erroneous robot behavior. To
validate this method, we conducted an EEG experiment with a
simplified HRI protocol in which a humanoid robot displayed
context-dependent erroneous behavior from time to time. The
EEG data taken from 13 participants revealed biologically
plausible error-related potentials (ErrP) whose spatio-temporal
distributions match well with related neuroscientific research.
We further demonstrate that perceived erroneous robot action
can reliably be modeled and detected from human EEG signals
with classification accuracies on avg. 69.7±9.1%. These findings
confirm principal feasibility of the proposed method and suggest
that EEG-based ErrP detection can be used for quantitative
evaluation and thus improvement of robot behavior.

I. INTRODUCTION

Assessing, validating and improving quality of human-
robot interaction (HRI) is so far mostly performed by collect-
ing subjective measures from human interaction partners in
experimental HRI setups, e.g. questionnaire ratings capturing
the participant’s subjective experiences during or after the
experiment. These measures can be of high value to roboti-
cists and designers when aiming at improving naturalness
and efficiency in HRI. However, they are often inaccurate
or biased due to various reasons as they are highly prone to
variations of the participant’s individual interpretation of the
questions, the participant’s daily constitution, priming due
to the experimenter involuntarily influencing the participant,
and many more [1].

In this paper we propose and validate a neuro-based
method for objectively measuring robot behavior in HRI. Us-
ing electroencephalography (EEG) signals acquired from a
human interaction partner we aim at detecting the perception
of inappropriate/unexpected/erroneous robot behavior (see
Fig. 1). Although depending on the context, perception of in-
appropriate robot behavior can vary based on the participant’s
individual interpretation, our proposed method is optimally
objective in the sense that it captures neural responses
immediate to the participant’s conscious realization of that
robot action (approx. 300-500 ms thereafter). We suggest this
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Fig. 1. Conceptual illustration of our approach: In interaction with a
robot, a human interaction partner observes context-dependent inappro-
priate, unexpected or erroneous robot behavior. In response, the human
electroencephalogram (EEG) shows deviating brain responses compared to
appropriate, expected, and correct robot behavior. We suggest, decoding this
information from the human EEG to be a valuable objective measure for
quantifying and improving robot behavior in human-robot interaction (HRI).

measure can be of great help to roboticists in validating and
improving/adapting robot behavior gradually or even on-the-
fly during HRI.

We make the following contributions: We propose a neuro-
based method to objectively evaluate robot behavior in HRI.
For that, we (1) demonstrate that human perception of
context-dependent erroneous robot behavior in HRI can be
observed via EEG as specific neural responses, (2) we further
demonstrate that these responses can reliably be detected
from EEG signals, (3) and we provide a discussion on
how we envisage to transfer these findings into a gernalized
method for objectively validating robot behavior. We believe
the utilization of EEG to validate and improve HRI is a key
component to progress in social robotics. This endeavour is
as well reflected in one of our previous papers [2] in which
we focused on human-robot eye-contact and engagement.

II. RELATED WORK

When humans make or perceive errors, a distinct response
can be detected in the EEG due to the person realizing this
error [3]. This response is related to error-/performance-
monitoring processes in the brain, which are crucial for
successful goal-directed behavior, decision making, planning
and execution of tasks, but also flexible adaptive behav-
ior, error handling and learning [4]. It is suggested that
performance monitoring happens throughout a distributed
network involving many regions of the brain, but related
electrophysiological (EEG) responses have most consistently



Fig. 2. Trial design: (a) Trial start, (b) break of random duration between 500-2000ms, (c) target stimulus presentation (in this case up), (d) participant
response in form of arrow key press, start robot head movement (e) ongoing robot head movement (f) end robot head movement (g) target border feedback
presentation (correct: green; incorrect: red), (h) disappearance target, start robot head turning back (i) ongoing robot head turning back (j) end of robot
head turning back, updating average reaction time and error count.

been reported to originate from the posterior medial frontal
cortex (pMFC) [4]. These responses are commonly referred
as error-related potentials (ErrP), a specific type of event-
related potentials (ERP). So far, fundamental research was
mainly focused on self-inflicted errors, but recently re-
searchers have observed similar responses when a person
recognizes errors inflicted by others, such as a computer,
a machine, or another human [5]. This finding has created
attractive opportunities for engineering applications, specifi-
cally in the field of Brain-Computer Interfaces (BCI), which
allow a person to communicate solely via brain activity. It
has been shown that ErrPs can be automatically detected
when a BCI delivers erroneous feedback [6] and that this
information can be used for correction or adaptation of
BCIs [7]. Typical ErrP single-trial classification accuracies
are around 70-80% and relatively stable across recording
sessions; ErrP classifiers have shown to still perform well
up to 600 days after initial calibration [8] and can be
applied across different task sets [9]. These works showed
that decoding error-related potentials from human EEG can
reliably be used to improve efficiency, performance and
fluency in human-machine interaction. Most works along this
line of research adopted (and sometimes modified) rather
abstract experimental setups used in neuroscience, such as
the Choice-Reaction Time (CRT) or the Flanker task. Some
works have extended towards more naturalistic video-game
based human-computer interaction, e.g. [10]. Only a few
works have yet extended towards real physical machines such
as industrial robotic arms, e.g. [11]. We present an extension
of this line of research to the domain of human humanoid
robot interaction for the measurement of context-dependent
erroneous robot action.

III. EXPERIMENT

A. Short description, Objective, and Hypothesis

The purpose of the experiment was the investigation of
perceived machine error in human-robot interaction. We de-
veloped a simplified HRI protocol in which a robot displayed
context-dependend erroneous behavior from time to time. In
order to link up well with the current state of research, we

developed a modified CRT-protocol: The participant’s task
was to react as quickly as possible to a target stimulus
presented on the computer screen behind the robot with
a correspondig key stroke. As a response, the robot head
would move in the respective direction. From time to time,
machine errors were introduced which manifested as a wrong
feedback (robot head would turn in the wrong direction).
We hypothesized to find ErrP responses in the human EEG
comparable to those reported in previous literature, such as
in [6], [8], [10], [11]. Based on this we further propose
the principal feasibility to build EEG decoders capable of
detecting these responses.

B. Environment and Data Recording

The experiment took place in a quiet room which was
partitioned into two sections by means of a curtain. On the
right side of the room, a participant was seated approximately
1.5 meters in front of the humanoid robot NAO positioned
in a crouched posture in front of a computer screen. NAO is
a 58 cm tall humanoid robot with 21-25 degrees of freedom
[12] which was controlled by a program running on an
external PC connected to the robot via local area network
(LAN). For the robot control and thus the implementation
of the experiment protocol we used the Python-based Naoqi
library; for presentation of stimuli on the computer screen
we used the Psychopy library. The robot was equipped with
a light emitting diode (LED) + a photodiode at the back of
the its head in order to record the ground truth timing of the
head movements synchronously to the recording of the EEG
signals. This setup was not directly visible to the participants
and thus not distracting. EEG data was acquired with a
Brain Products actiChamp amplifier equipped with 32 active
EEG electrodes arranged according to the international 10-20
system. All leads were referenced to the average of TP9 and
TP10 (linked mastoids referencing) and the sampling rate
was set to 1000 Hz. The impedance levels of all leads were
kept below 10 kΩ. Three out of the remaining 30 channels
(FT9, FT10, Oz) were used for capturing electrooculogram
(EOG) signals in three locations of the participant’s face
(forehead, left and right outer canthi) according to a method



suggested by Schlögl et al. in 2007 [13]. In addition, the
amplifier was connected to the PC executing the experiment
protocol via parallel port over which event triggers were
transferred to be stored synchronously with the EEG sig-
nals. The computer keyboard for capturing the participant
responses was located in near distance to the participant to
allow for comfortable access.

C. Experimental Protocol

As briefly outlined in the beginning of this chapter, the par-
ticipants were presented randomly one out of three possible
target stimuli on a computer screen located behind the robot.
In the initial head position (yaw=0◦, pitch=0◦) the robot was
gazing directly at the participant. The target stimuli were
realized as white rectangulars of size 3x3 cm appearing either
left, right, or above the robot head. The participant’s task was
to respond as quickly as possible with a corresponding arrow
key stroke (left, right, up). Upon participant response, the
robot head turned towards the target (left: yaw+40◦, right:
yaw-40◦, up: pitch-20◦) and reached the end position after
130 ms, kept the position for about 500 ms and then moved
back to the initial head position (see Fig. 2). Machine errors
(wrong robot response) were introduced randomly with a
probability pErr, however only if the participant’s response
was correct. In addition, all participants executed a second
(control) scenario with identical protocol, in which the robot
was replaced by a simplified cursor on the computer screen
(see Fig. 2, bottom left)1.

The experimental protocol was devided into two recording
sessions (one for each scenario) which took place one after
the other, whereby half of the participants started with the
control-scenario and the rest with the robot-scenario. Each
scenario was further divided into 10 blocks of 50 trials each;
the duration of one block was approximately 2.5 minutes.
Thus, the total duration of the experiment was approximately
60 minutes. After each block the participant could take a rest
and decide when to continue with the next block in a self-
paced fashion. In order to avoid habituation to the machine
error probability, half of the blocks were executed with a
machine error probability of pErr = 20% and the other
half with pErr = 50%. The order was pseudo-randomized
such that no more than 2 subsequent blocks would belong
to the same error probability category and the first block
was always set to pErr = 20%. As such 500 trials were
collected per participant and scenario out of which were
approximately 35% machine error trials and a neglegible
number of human committed error trials. As an incentive to
the participants, the left upper corner of the screen informed
about the average reaction time per block in milliseconds,
the right upper corner about the number of errors per block
with no distinction of errors committed by the participant or
the machine.

1The data collected in the control scenario will not be further discussed
here as this would go beyond the scope of this paper.

D. Participants

Thirteen healthy participants (age: 30.3±7.3; 5 females, 8
males) participated in the experiment. The majority of edu-
cational background was in non-engineering, non-technical
majors (9 out of 13). Prior experience and familiarity with
humanoid robots scored rather low with 2.6±1.8 on a scale
of 1 ”non-familiar” to 7 ”familiar”. The participants were
equally instructed about the experiment protocol and agreed
on having their data acquired by signing a consent form.
Each participant was paid a honorarium of 8 EUR/h.

IV. DATA ANALYSIS AND MODELING

A. Data Preprocessing

The data of the first participant (s01) had to be excluded
from any further analysis due to technical issues during the
experiment. All EEG data preprocessing was carried out in
MATLAB, in part using functions provided by the EEGLAB
toolbox [14]. The following steps were carried out for each of
the remaining datasets (12 participants) separately: (1) Band-
pass filtering of EEG and EOG channels using a zero phase
Hamming windowed sinc FIR filter with cutoff frequencies
of 1 Hz and 40 Hz. (2) Identification and interpolation of
artifacted EEG channels using kurtosis and a threshold of
5%. (3) Automatic EOG artifact correction according to
a method suggested by Schlögl et al. in 2007 [13]. This
method does not only account for eye-blink artifacts but also
horizontal eye-movements. (4) Re-referencing EEG channels
to common average (CAR). (5) Determination of ground
truth timing of onset of robot head movement using the
signals captured by the photodiode. (6) Downsampling EEG
data to 500 Hz in order to reduce processing time in all
further analysis steps.

For further analyses, the data were epoched by extracting
segments around the time2 of feedback presentation (robot
head turning). In particular, segments of -500 to 1500 ms
with respect to the onset of feedback presentation were
extracted. These epochs were further separated into 3 cat-
egories: (1) no error trials, (2) machine error trials, (3)
human error trials. Per participant, we extracted on average
approximately 325 no error trials, 159 machine error trials,
and 16 human error trials. Since human errors were not in the
focus of our investigation and their average number turned
out to be very low, we discarded them from any further
analysis.

B. Neurophysiological Analysis of Error-Related Potentials
(ErrP)

We averaged the ERP time-courses of each category
separately without applying any baseline correction and
visualized them in Figure 3. As we expected the main
effect to be centrally located (based on related literature),
only the ERPs of channel Cz were depicted. Panel a shows
the grand average of all participants for each category
(noError, machineError). In addition we visualized the grand

2Please note that exact timing of onset of robot head movement was
retrieved from the captured photodiode signals during data pre-processing



Fig. 3. Upper panel (a): grand average ERPs per category of channel Cz. Upper panel (b): grand average difference ERP (machineError minus noError).
Lower panel (c): topographic spatio-temporal visualization of the grand average difference ERP.

average difference ERP (machineError minus noError) in
panel b. The difference ERP shows the characteristic N2
component, a negativity around 200ms post stimulus, that
has been reported consistently in relation to cases of high
conflict (e.g. incongruent stimuli) [15]. When looking at the
spatio-temporal topographical activitation patterns (panel d)
it becomes evident that the N2 component is more frontally
located. Also, the characteristic P3 component (centrally
located around 300 ms post stimulus) is visible and enhanced
in case of an error. P300 modulations have consistently been
associated with stimuli expectancy (enhanced P3 in case of
unexpected events) [?]. In addition we observe another error-
related enhanced positive component around 500 ms post
stimulus which is distributed over central-parietal sites. This
effect might be related to the P600 component which has
been associated with syntactic/semantic anomalies [?]. The
observed ERPs are biologically plausible in terms of spatio-
temporal topographical distribution. In fact, the observed ef-
fects qualitatively resemble previously reported error-related
potentials from different but related experimental contexts,
e.g. in [6], [10].

C. Data Modeling and Evaluation

The purpose of modeling the data was to demonstrate
the feasibility to discriminate based on EEG data, the two
classes of mental states under investigation (class1: response
to noError event, class2: response to machineError event).
This was carried out in three steps: (1) extraction of relevant
features in the time- as well as in the frequency-domain,
(2) classifier training, and (3) evaluation. We intentionally
decided to employ a relatively simple modeling approach
to demonstrate principal feasibility, foster transparency, and
illustrate the lower boundary of achievable classification
performance.

1) Feature Extraction: We used standard feature extrac-
tion techniques described in related literature. Most litera-
ture on ERP modeling and classification employ temporal
features e.g. [6], some few have explored spectral features
as well, e.g. [10].

Time-domain features: As for temporal features we com-
puted the arithmetic mean in pre-defined time-slots of 0-
100, 100-200, 150-250, 200-300, 250-350, 300-400, 400-
500, 500-600, 600-800 ms with respect to the onset of
feedback presentation. As such we obtained 243 temporal
features per epoch (27 channels x 9 time slots).

Frequency-domain features: As for spectral features we
first bandpass filtered each epoch using two subsequent
Chebychev Type II zero-phase filters (separate high-pass
with cutoff frequency 4Hz and low-pass with cutoff-
frequency 13Hz) with maximum passband attenuation of 3
dB and minimum stopband attenuation of 50 dB. Previous
literature reported the ErrP to be mainly represented in
theta-band (4-8Hz) [16]; our own experiences, however,
show that in some participants the manifestation of ErrP
can reach higher in frequencies and we decided therefore
to include the alpha band. We computed the spectral power
in the same time-slots as those used for temporal features.
The spectral power was obtained by computing the natural
logarithm of the variance of the signal of each time-slot
(ln(var(x))). As such we obtained 243 spectral features per
epoch.

2) Classification: As for modeling this binary classifica-
tion problem we used linear discriminant classifiers (LDA)
and evaluated the two different feature types separately. In
addition we evaluated the combination of both feature types.
As we had to deal with a relatively high-dimensional feature
space, dimensionality reduction was crucial to overcome
the curse of dimensionality. Instead of employing feature-



TABLE I
10-TIMES 10-FOLD CROSS-VALIDATION RESULTS

Temporal (λ = 0.48) Spectral (λ = 0.91) Combined (λ = 0.77)
ID noErr

[%]
machErr
[%]

accuracy
[%]

noErr
[%]

machErr
[%]

accuracy
[%]

noErr
[%]

machErr
[%]

accuracy
[%]

s02 74.5 60.1 69.9 64.0 51.3 59.9 74.0 58.4 69.0
s03 75.2 66.1 72.0 65.3 59.7 63.3 74.1 65.7 71.1
s04 84.9 71.6 79.9 80.7 66.5 75.3 89.8 71.8 83.0
s05 70.9 61.9 67.8 63.2 56.0 60.7 70.5 62.1 67.6
s06 85.9 71.8 80.6 67.5 70.4 68.6 86.4 70.6 80.4
s07 82.3 69.9 78.3 69.6 59.9 66.5 82.9 68.4 78.2
s08 64.8 58.6 62.5 54.2 53.2 53.8 64.4 56.6 61.5
s09 75.4 62.0 70.7 61.2 56.8 59.6 75.8 62.5 71.2
s10 60.8 47.6 56.4 54.0 52.8 53.6 61.4 42.9 55.2
s11 72.6 61.2 68.6 63.8 60.3 62.6 71.9 58.9 67.4
s12 58.0 39.4 51.7 56.5 44.9 52.6 63.8 39.3 55.6
s13 78.8 70.6 75.8 71.1 63.9 68.4 81.4 69.0 76.8
AVG±SD 73.7±9.9 61.7±9.9 69.5±9.0 64.3±7.6 58.0±7.0 62.1±6.9 74.7±9.1 60.5±10.3 69.7±9.1

selection/-pruning algorithms we decided to use a regular-
ized version of the LDA classifier [17] which controls the
computation of the covariance estimates using a shrinkage
function (see equation (2)).

The classifier training is given by equations (1)-(3):

~w = (µ2−µ1)(σreg1 +σreg2)
−1 (1)

with ~w being the classifier weight vector, µ1,2 being the
class-wise means and σreg1,2 the regularized class-wise co-
variance estimates, with:

σreg1,2 = (1−λ )σ1,2+λνI (2)

and λ being the shrinkage parameter with λ ∈ [0,1]⊂ IR.

b =−~w(µ1 +µ2)/2 (3)

with b being the classifier bias.
The classifier decision function is given by equation (4):

y = sign(~w~xT +b), (4)

with ~x being the feature vector and y the class decision (-1:
noError; 1: machineError).

3) Evaluation: We used 10-fold cross-validation to train
the classifier on 9 out of 10 splits and tested it with the
remaining split. Then folds were shuffled until each fold had
once been used for testing. The results were averaged and
reported as class-wise and mean classification accuracies.
Evaluation was performed on each participant separately.

Please note that the number of observations per class
were initially unbalanced (machineError observations were
approx. 35% of the total number of observations). Therefore,
before classifier training the number of training samples
were balanced by random observation picking from class
noError. Thus, cross-validation was repeated for 10 times to
yield average results. Testing was always performed on the
unbalanced split. The shrinkage parameter λ was manually
tuned based on the data of the first participant (s02) for

each feature type and their combination separately using
grid-search. The obtained λ -values were then applied to the
remaining participants.

4) Results: Table I shows the cross-validation classifi-
cation results. We obtained the highest mean classification
accuracy of 69.7% with combined features, however not sig-
nificantly higher than with temporal features alone. Temporal
features generally outperformed spectral features by approx.
7%. The mean classification accuracies are significantly
above chance level p < 0.05 for all participants and feature
types (temporal, spectral, combined)3. In addition, we ob-
served a consistent bias towards the class noError, meaning,
the specificity (true negative rate: correct classification of
noError) is higher than the sensitivity (true positive rate:
correct classification of machineError). Since we took care of
class balancing, we assume this phenomenon to be related to
slight but systematic deviations between the distributions of
both classes. Based on this assumption we propose classifiers
with less sensitivity to class distribution (e.g. Support Vector
Machines) may lead to more balanced results.

V. DISCUSSION

Our findings indicate (1) that the effects we elicited
with our experiment and captured via EEG originate from
performance monitoring related brain processes, since
both spatial and temporal distributions resemble previously
reported ErrPs in related but different experimental contexts.
(2) We demonstrated that these responses can successfully
be modeled and detected on a participant-dependent level.
We understand these results as an entry point to the use of
ErrP detection in validating robot behavior in HRI. In this
section, we aim at highlighting a series of implications and
challenges we envisage along the path of implementing this
concept in HRI validation:

3Validated with one-sample t-test against 50% based on 100 individ-
ual classification results obtained by 10-times repeating 10-folds cross-
validation.



Classification performance: - Is the average classification
accuracy of 70% high enough and are the classifiers
robust enough with regard to the proposed method? (1)
Classification performance should be understood in a
probabilistic way in the context of this work, meaning:
out of a series of erroneous robot actions, how many
would actually be detected as erroneous given that correct
actions would robustly be detected as correct. By shifting
the classifier bias to near 100% sensitivity we still obtain
approx. 40% specificity, meaning, every third erroneous
robot action would reliably be detected as such and be
usable for adaptation of the robot’s behavior. (2) ErrPs
have been shown to be reliable across time [8], therefore
we expect our classification models to be re-usable in
subsequent recording/online-application sessions with
comparable performance.

Event-based detection: - What if robot actions were
continuous, non-event-based? At the current stage, our
proposed method relies on events which are clearly isolated
and separated in time. Also, our method relies on precise
information about when in time these events happened.
Depending on the context, however, HRI can be less event-
based, but more continuous or a superposition of events on
continuous interaction. As some works have successfully
shown non time-locked ErrP detection (continuous), e.g.
[18], [10], we do not expect a serious drop in classification
performance when transferring our method to more
continous interaction protocols without precise information
about timing of events. However, it should be noted that the
proposed method does rely on events, namely the human
recognition of something suddenly odd, inappropriate, or
erroneous in the robot’s behavior, even if these events are
embedded in continuous trajectories.

Task specificity: - Are the observed effects and the
classification models specific to the task employed in
this experiment? Among other works, e.g. [9], our work
confirms again the inspecificity of ErrP responses to the
experimental context. The qualitative resemblance of the
observed ErrP with results reported by others speaks in favor
for generic underlying neural processes which seem not to
be specifically influenced by the type of task/interaction
or the stimulus appearance/meaning. In this regard we do
not expect significant deviations of the observed ErrP when
changing the experimental conditions, e.g. from simplified
head turning to other gestures or even language based
interaction, etc.

VI. CONCLUSION

In this paper we proposed a neuro-based method for
quantitative evaluation of robot behavior with respect to
inappropriate / erroneous actions. We validated this method
in an experiment with a simplified HRI protocol and showed
that ErrPs can be observed in the EEG signals of a hu-
man interaction partner when observing a humanoid robot
performing context-dependend erroneous actions. We further

demonstrated that these responses can successfully be mod-
eled and detected from human EEG with avg. accuracies
of 69.7±9.1%. With these findings we confirm principal
feasibility of our proposed method and suggest that EEG-
based ErrP detection can be used for quantitative evaluation
and improvement of robot behavior and HRI.
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