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Abstract

Objective. Error-related potentials (ErrP) have been proposed as an intuitive feedback

signal decoded from the ongoing electroencephalogram (EEG) of a human observer for
improving human-robot interaction (HRI). While recent demonstrations of this approach
have successfully studied the use of ErrPs as a teaching signal for robot skill learning, so

far, no efforts have been made towards HRI scenarios where mutual adaptations between
human and robot are expected or required. These are collaborative or social interactive
scenarios without predefined dominancy of the human partner and robots being perceived

as intentional agents. Here we explore the usability of ErrPs as a feedback signal from the
human for mediating co-adaptation in human-robot interaction. Approach. We experimentally
demonstrate ErrPs-based mediation of co-adaptation in a human-robot interaction study
where successful interaction depended on co-adaptive convergence to a consensus between
them. While subjects adapted to the robot by reflecting upon its behavior, the robot adapted
its behavior based on ErrPs decoded online from the human partner’s ongoing EEG. Main
results. ErrPs were decoded online in single trial with an avg. accuracy of 81.8% =+ 8.0%
across 13 subjects, which was sufficient for effective adaptation of robot behavior. Successful
co-adaptation was demonstrated by significant improvements in human-robot interaction
efficacy and efficiency, and by the robot behavior that emerged during co-adaptation. These
results indicate the potential of ErrPs as a useful feedback signal for mediating co-adaptation
in human-robot interaction as demonstrated in a practical example. Significance. As robots
become more widely embedded in society, methods for aligning them to human expectations
and conventions will become increasingly important in the future. In this quest, ErrPs may
constitute a promising complementary feedback signal for guiding adaptations towards human
preferences. In this paper we extended previous research to less constrained HRI scenarios
where mutual adaptations between human and robot are expected or required.
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1. Introduction

Over the last two decades, research on non-invasive brain—
computer interfaces (BCI) (Wolpaw et al 2002) has gained
increased interest in error-related potentials (ErrPs). ErrPs are
event-related potentials (ERP) (Blankertz et al 2011) occur-
ring in response to the human recognition of both self-inflicted
(Miltner et al 1997, Falkenstein et al 2000, Botvinick et al
2001, Holroyd and Coles 2002) and/or observed (van Schie
et al 2004) erroneous actions. The underlying neural process
is understood to be related to error-/performance monitoring
in the brain, crucial for goal-directed behavior, decision
making, error handling as well as adaptation and learning
(Ridderinkhof et al 2004, Garrido et al 2009, Alexander and
Brown 2011, Ullsperger et al 2014). ErrPs are a reliable effect
observable in the human electroencephalogram (EEG) and
their decoding from EEG signals has repeatedly shown to
be robust across recording sessions (Chavarriaga and Milldn
2010) and high-performant with single trial classification
accuracies around 70%—-80% (Ferrez and Millan 2005, 2008a,
Chavarriaga et al 2014). Schalk et al (2000) were among the
first to propose the use of ErrPs for online improvements
of BCI decoders. They demonstrated that ErrPs occur in
response to the subject’s observation of the BCI delivering
wrong output, e.g. mismatching the subject’s intended com-
mand the BCI was ought to execute. This discovery led to a
series of studies simulating and demonstrating the efficacy
of simultaneous ErrP-decoding for online adaptation of BCI
decoders, in particular for sensorimotor BCIs (Blankertz et al
2003, Ferrez and Millan 2008b), but also P300-based speller
BClIs (Schmidt et al 2012, Spiiler et al 2012a, 2012b).

More recently, ErrPs have been proposed as a feedback
signal from the human for guided adaptations of physical
robotic systems (Iturrate et al 2010, 2015, Kreilinger et al
2012, Ehrlich and Cheng 2016, Kim et al 2017, Salazar-Gomez
et al 2017, Welke et al 2017). The basic concept is to harvest
ErrP responses from a human observer upon recognition of
erroneous or inappropriate robot actions in order to adapt
or improve the robotic system post-hoc or on-the-fly. This
approach is particularly promising as a complementary method
for validating and improving robotic systems and human-robot
interaction (HRI), because: (1) ErrPs are naive responses
which require no mental effort from the human observer. (2)
ErrPs can be decoded in real-time, allowing for online adap-
tations of the robotic device without interruption of ongoing
interaction with the human partner. (3) ErrPs are understood to
be sensitive to violations of expectations (Oliveira et al 2007,
Sallet et al 2007) and as such comprise an implicit and imme-
diate feedback, informative (3a) for improving the robotic
system to better align with the observer’s expectation, and
(3b) possibly informative with regard to the observer’s overall
assessment of the robotic system and/or the quality of interac-
tion. Recent works have successfully demonstrated the use of
online decoded ErrPs from a human observer for intuitive rein-
forcement learning (RL) of robot skills, e.g. execution of tra-
jectories in an end effector reaching task (Iturrate et al 2015),
association of objects in a sorting task (Salazar-Gomez et al
2017), as well as recognition and imitation of human gestures

(Kim et al 2017). While these works showed promising results
of this highly innovative approach, they were primarily con-
centrated on using ErrPs as a teaching signal for robot skill
learning. A question that remains open is whether this ErrP-
based feedback signal can also be useful in situations where
both human and robot are required to adapt to each other to
converge to a consensus in the given joint task. That is, situa-
tions in which there is no explicit ‘right’ behavior (policy) the
robot is supposed to be taught, but the human partner may as
well adapt to the robot. Approaching this question is important
regarding human interaction with systems that have a form of
intentional agency, e.g. HRI in the context of collaborative or
social interactive scenarios. This contrasts to human interac-
tion with robotic systems that are primarily used as tools sup-
posed to fulfill an explicit function (explicit ‘right’ policy), e.g.
a neural prosthesis.

The current study explored the usability of ErrPs as a feed-
back signal in the context of human-agent co-adaptation. The
approach used is schematically described in Figure 1 and con-
ceptually assumes the interaction between two partners: (1)
An intentional artificial agent with a policy 7 determining its
behavior based on a set of behavioral states S, actions A, and
goals/intentions G. (2) A human partner, interacting with that
agent based on a belief of the agent’s policy 7’. While the agent
is provided feedback through online decoded ErrPs to gradually
adapt its policy 7 to the human’s belief 7, the human partner
may gradually adapt his/her belief 7/ to the agent’s policy 7
by reflecting upon its behavior. As such, both systems (human
and agent) are adaptive, allowing for mutual adaptation with
the aim to converge to a consensus in form of an alignment of
the human’s belief and the agent’s actual policy: w}inal R Tfinal-

The conceptual approach was implemented in form of a
human-robot social interactive repeated guessing game where
the human partner has to guess, from a humanoid robot’s
gazing behavior, which of three available objects was selected
by the robot. While the human’s task was to learn to infer
the robot’s intentions/goals by observing and interpreting the
robot’s gazing behavior, the robot’s task was to learn to convey
its intentions/goals via gazing behavior to the human partner;
efficient interaction required their convergence to a consensus
by co-adaptive learning of both parties. We experimentally
demonstrate that ErrPs decoded online from the ongoing EEG
of the human partner can successfully be used to mediate and
establish co-adaptation between human and robot as indicated
by significant improvements in interaction performance.

With this extended perspective we aim to make the fol-
lowing contributions in line with ongoing research on the use
of ErrPs for HRI:

e We demonstrate the usability of ErrPs for mediating
co-adaptation in HRI. This relaxation of interaction con-
straints—permitting mutual adaptation—is particularly
important with regard to HRI scenarios where the human
partner does not have a predefined dominant role (prin-
cipal or teacher role). Scenarios, in which adaptations of
the human to the robot are expected or even necessary for
successful interaction, such as in collaborative or social
interactive HRIL.
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Figure 1. Conceptual approach: in interaction with an agent, the human holds a mental model (belief) of the agent’s policy 7’ to predict

/

its future behavior, which can be based on prior expectations ;,;,

and is further adapted during interaction. ErrPs, online decoded from

neural activity of the human partner are, provide as a critic for guided adaptation of the agent’s actual model 7. This creates a two-party
co-adaptive system allowing both human and agent seeking consensus in form of an alignment of the human’s belief and the agent’s actual

policy: Trﬁnal R Tfinal-

e Previous works adapted the robot’s behavior using ErrP
feedback based on single, explicitely erroneous robot
actions (Iturrate et al 2015, Salazar-Gomez et al 2017,
Kim et al 2017). In more complex robot behavior, how-
ever, individual robot actions are more likely to occur in
rapid succession and not to be temporally well isolated,
the latter being a prerequisite for reliable ErrP decoding.
Here we demonstrate robot adaptation based on ErrPs
arising from and reflecting the human’s interpretation of
the robot’s intention/goal, with the latter comprising a
sequence of actions instead of a single occurrence. Along
this line, we propose and successfully employ an ErrP-
based episode update strategy with delayed reward for
online adaptation of the past sequence of robot actions.

The paper is structured as follows: in the subsequent sec-
tions the experimental paradigm (section 2.1), design and
tasks (section 2.2) are described in detail, followed by a
thorough description of the implementation of the technical
components of our approach (EEG-based online decoding of
ErrPs and corresponding online adaptation of robot behavior)
in section 2.3. The main results of efficacy of online ErrP
decoding and human-robot co-adaptation are reported in sec-
tion 3, followed by a discussion of the results in light with
the outlined contributions of this paper in section 4. Section 5
concludes the paper.

2. Methods

2.1. Experimental paradigm

The experimental paradigm is schematically described in
figure 2(a). Three objects were located in between subject and

robot. The robot would select one among the three objects
(unknown to the subject) which denoted its covert goal/
intention g and subsequently started executing a gaze pattern
(action sequence) by turning its head (actions: A) towards the
objects and the subject (states: S). The subject’s task was to
guess the robot’s initially selected object from observing its
gaze behavior: The subject may for instance consider which
object the robot fixated more often or for the longer duration.
Eventually, the robot would reveal the actual object it has ini-
tially selected, resulting in the subject experiencing a match
or mismatch with the object he/she believed the robot had
selected. In that moment the subject’s ongoing EEG signals
would be classified into an error- (mismatch) or non-error
(match) response and used as a negative or positive reward for
adaptations of the robot’s gaze behavior policy . Meanwhile,
the subject may update his/her prior belief 7’ about the robot’s
gaze behavior to improve guessing in subsequent games. We
hypothesize that by using the ErrP feedback for iterative
robot adaptation would eventually converge to robot gazing
behavior which facilitates the subject to correctly infer the
robot’s selected object. To what extend this convergence
is driven by the human adapting to the robot or the robot
adapting to preconceptions of the human is deliberately kept
flexible to investigate the feasibility of ErrP-based mediation
of co-adaptation as outlined in the introduction.

2.2. Experimental design

2.2.1. Participants. Eighteen healthy subjects participated in
the study. The data of the first two subjects were discarded due
to technical problems during the experiment. The remaining
sixteen subjects were 7 females, average age: 29.2 + 5.0, and
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Figure 2. (a) Experimental paradigm: human subject and robot play a guessing game in which the robot covertly selects one out of three
objects. Subsequently the robot produces a gaze pattern based on which the subject has to guess the secret object. The subject’s brain
responses are measured (marked in green) and used as a feedback signal to adapt the robot’s gaze behavior policy 7, while the subject may
adapt the prior belief 7’ about the robot’s gaze behavior policy. (b) Experimental setup from the perspective of a subject. (c) Trial structure
of a single guessing game with the corresponding moment of ErrP decoding marked in green.

all right-handed. The study was approved by the institutional
ethics review board of the Technical University of Munich.
All subjects were informed about the tests before its conduc-
tion. They participated voluntarily and gave written consent.
Participants were paid an honorarium of 8§ EUR/h for their
participation.

2.2.2. Experimental tasks. An overview of the experimental
tasks is provided in table 1. Each experiment consisted of
two parts conducted in the following order: (1) open-loop
calibration session (CALIB), (2) four closed-loop co-adapta-
tion sessions (CORL). In both parts, the subject was asked
to repeatedly play the guessing game together with the robot
(for the remainder of this paper, a single game is also called
trial; for technical details about the trial structure the reader
is referred to section 2.3.1 and figure 2(c)). The first part of
the experiment (CALIB) had the purpose of collecting EEG
data for calibrating subject-specific ErrP-decoders utilized
afterwards for online ErrP-decoding during the co-adaptation
sessions (CORL). During CALIB, the robot’s gaze behavior
policy was pre-programmed and not adapting; during CORL,
the robot’s gaze behavior policy was online adapted based on
the ErrPs decoded from the subject’s EEG signals while inter-
acting with the robot. We opted for an experimental design
integrating calibration and online application in a single
recording session per subject to avoid the possibility of day-
to-day data variability. Furthermore, design choices on the
number of trials for CALIB and CORL were made to keep

the duration of the experiment around 1 h maximum to avoid
subjects suffering from concentration lapses resulting in data
quality degradation.

2.2.2.1. Open-loop calibration session (CALIB). During this
experimental task, the robot’s gaze behavior followed a deter-
ministic behavior in which the robot tended to look at the
selected object more often or remained gazing at it (for details
about the technical implementation the reader is referred to
section 2.3.2). With this gaze behavior, subjects achieved high
accuracies in guessing the robot’s selected object (>95%).
Participants performed in total 150 guessing games (trials)
during the calibration session in three blocks of 50 trials each,
resulting in a total duration of 20.4 £ 6.7min. Pilot experi-
ments showed that subjects could perform 50 trials in a row
without reporting notable concentration drops. The breaks in
between blocks allowed the subjects to relax and prepare for
the next block. To control the number of error events, false
feedback was introduced with a probability of p,,, = 0.3.
Usually, false feedback rates are chosen around 20% (Ferrez
and Millan 2005, Chavarriaga et al 2014, Iturrate et al 2015).
Here, an increased false feedback rate was used to obtain a
higher number of error observations given the limited num-
ber of 150 trials. False feedback was realized as wrong robot
feedback irrespective of whether the subject guessed cor-
rectly. This resulted in approximately 35% error (mismatch)
events combining false feedback and subject guessing mis-
takes. The EEG data recorded during the calibration session
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Table 1. Overview of the experimental tasks and corresponding purpose in the order of conduction, covering part 1 (open-loop calibration

session—CALIB), and part 2 (four separate closed-loop co-adaptation sessions—CORL-L,-1L,-I1I, and -IV). The duration of the entire
experiment was approximately 1h per subject, including breaks.

Part Short name

Short description and purpose

Duration

1 Open-loop calibration CALIB

session

Task: To guess the robot’s selected object, indicating guess via key-
press. # trials: 150 (3 blocks of 50 trials each)

Purpose: Collect EEG data for subsequent calibration of subject-specific

ErrP-decoders

Robot gaze policy: pre-programmed and non-adaptive. Elicitation
of ErrPs with random occurrences of false-feedback events with a
probability of p,,, = 0.3.

15-25 min

ErrP decoder
calibration

Automatic calibration of subject-specific ErrP decoder based on data
collected during CALIB

5 min

2 Closed-loop co-adaptation CORL-I

sessions

Task: To guess the robot’s selected object, indicating guess via key-
press. # trials: 50

Purpose: Online application of ErrP decoder for mediating human-robot

co-adaptation

Robot gaze policy: Initial uniformly random gaze behavior; updated
after each trial based on the classified outcome of the corresponding
online decoded ErrP

6—8 min

CORL-II

Same as CORL-I with reinitialization of gaze policy

6—8 min

CORL-III

Task: To guess the robot’s selected object without overtly indicating

6—8 min

guesses via key-press (compared to CORL-L-II, and -IV). Robot
performed gaze behavior for a pre-defined fixed duration. # frials: 50
Purpose: Online application of ErrP decoder for mediating human-robot
co-adaptation without explicit decisions from the human partner (sole
observation and mental reflection upon the robot’s gaze behavior)
Robot gaze policy: same as in CORL-L-II, and -IV with reinitialization

of gaze policy

CORL-1V

Same as CORL-I with reinitialization of gaze policy

6—8 min

was afterwards used to build a subject-specific ErrP-decoder
subsequently to be employed for online ErrP-decoding during
the co-adaptation sessions. During CALIB, subjects indicated
their guess by keypress and received feedback about their cor-
rect and wrong number of guesses displayed on a computer
screen. Since the calibration session had a comparably long
duration and was rather monotonous (non-adaptive robot
behavior), this feedback was introduced as a means for self-
monitoring to encourage subjects to improve and maintain
their performance throughout the session.

2.2.2.2. Closed-loop co-adaptation sessions (CORL). After
the calibration session, each participant performed four sepa-
rate online co-adaptation runs, each consisting of 50 trials,
with an average duration of approx. 6-8 min per run (corre-
sponding to the duration of one block during CALIB). We
opted for the conduction of several independent runs per
subject, as co-adaptation may fail due to uncontrollable and
random factors (e.g. stochastic sampling of robot actions,
self-paced subject response; further details are provided in
section 2.3). Furthermore, a single CORL was kept below
10min to restrict subject frustration if co-learning would turn
out unsuccessful. In the beginning of each run the robot gaze
behavior policy was reinitialized such that gazing was uni-
formly random distributed among the three objects and there-
fore allowed for no informed guesses of the selected object
(chance-level p = 1/3). In each trial, the subject’s ErrP

response to the robot revealing its initially selected object was
decoded online from the ongoing EEG signals and utilized
to update the robot’s gazing behavior policy. In three of the
four runs (CORL-I, CORL-II, CORL-IV), the procedure was
identical to the open-loop calibration session, in that subjects
indicated their guess by keypress. In CORL-III, subjects were
asked to observe the robot’s behavior for a pre-defined time
only, without communicating their guesses via keypress. We
introduced this additional run to investigate whether explicit
actions linked to the decisions (as in the form of keypresses)
of the subject were required or whether covert beliefs/deci-
sions (sole mental reflection without explicit actions) are suf-
ficient for successful co-adaptation. As such, CORL-III served
as a preliminary usability test of the proposed ErrP-based
approach in a more naturalistic and less constrained setting,
where no explicit information from the subject is available.
Unlike in CALIB, in CORL, no feedback on the number of
correct guesses was provided to subjects. This had no notable
effect on the observability and decodeability of ErrPs (see sec-
tion 3.1, and figure 3(b)).

2.2.3. Instructions. Subjects were asked to guess the robot’s
selected object by inferring information from its gazing
behavior. They were, however, not given any specific hints
on what to focus in particular. After the calibration session,
subjects were furthermore informed that during the online co-
adaptation runs the robot’s gaze behavior may change as it is
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specific time points above the plot (Figure style adopted from Iturrate et a/ (2013).) (b) Comparison of the difference grand average across
the calibration session and the co-adaptation runs I, II, and I'V. The comparison shows high resemblance of the difference ERPs across
experimental sessions. (c) ErrP single trial classification performance for offline cross-validation based on the calibration data and online
decoding performance during the co-adaptation runs. The black dashed lines indicate the theoretical chance-level of 60.37% for CALIB and
62.0% for individual CORLs. For CALIB, chance-level was exceeded in all subjects; for CORL, chance-level was exceeded in all but three
cases (s11/CORL-II, s14/CORL-II, sO6/CORL-IV). Online decoding accuracies were significantly different between CORL-I and CORL-II

and between CORL-II and CORL-IV, indicated by the asterisks.

subject to adaptations based on their ongoing brain activity.
No further details about the implementation of the experiment
were provided.

2.3. Systems: human, agent, brain-machine interface

2.3.1. Systems overview. Figure 2(b) shows the experimental
setup from the perspective of a subject sitting approximately
150cm in front of a humanoid robot. The robotic platform
chosen for the experiment was the humanoid robot NAO.
NAO is a commercially available (SoftBank Robotics) 58 cm
tall humanoid robot with 21-25degrees of freedom (Gouail-
lier et al 2008) that was controlled in this experiment by a
program running on an external PC connected to the robot via
local area network (LAN). The only body part of the robot
used was the head with pitch- and yaw-movements. Three
arbitrarily chosen physical objects were located on top of
cylindrical containers in fixed positions between the subject
and the robot (O;: a metal Buddha head—Ileft, O,: an electric
circuit board—middle, O3: a metal brain keychains—right).
The robot’s forehead was equipped with three identical green
light emitting diodes (LED) geometrically aligned with the
three objects and placed in a distance of approx. 1.5cm from
each other (see figure 2(b), bottom left corner). The LEDs were
controlled via a 4-channel digital analog converter (Phidget).
We used the LEDs in the experiment as the visual feedback
to communicate the robot’s initially selected object to the
subject (figure 2(a): ‘feedback’) with a fixed representation

(Oy: 1eft LED, O,: middle LED, Os: right LED). Subsequently,
subjects received an additional auditory feedback in form of
the robot speaking out the name of the chosen object (O;:
‘The head’, O,: ‘The circuit’, O3: ‘The brain’). The robot’s
choice was communicated in two ways for the following
reasons: LED-based feedback was introduced because of its
high saliency and perceptual simplicity, expected to result in
more distinct brain-responses in contrast to perceptually com-
plex or gradually unfolding stimuli which have been reported
to result in attenuated ErrP responses (Omedes er al 2015,
Ehrlich and Cheng, 2016, Welke et al 2017). The subsequent
additional robot speech feedback was introduced to increase
subject’s engagement in the experiment, as robot talking
has been reported to foster engagement in HRI (Sidner ef al
2004). Subjects were instructed to particularly attend the LED
feedback. Behind the robot, a computer screen was located
which served to provide the subject with additional informa-
tion about the number of correct (left, green) versus incorrect
(right, red) guesses during the calibration session (CALIB).
During the co-adaptation runs (CORL), this feedback was not
provided. Participant responses (figure 2(a): ‘decision mak-
ing’) were performed with the left hand and registered with
the following keys of an ordinary computer keyboard (O;: key
‘1°, 0y: key ‘2°, O3: key ‘3°). The experiment was realized in a
single program using the Python-based NAOqi-library (robot
control), the Phidgets-library (LED control), Psychopy library
(keyboard and screen control) (Peirce 2007) and executed on
an Intel®Core™ i5 CPU 750@2.67 GHz. Furthermore, this
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program received input from the ErrP decoder during the co-
adaptation runs which was executed on a different PC via the
TCP/IP-based ‘labstreaminglayer’ protocol (Kothe 2014).

2.3.1.1. Trial (quessing game) structure. Figure 2(c) shows the
structure of a single trial: (a) the trial started with the robot gaz-
ing at the human, and performing a uniform random selection
of either one of the objects g € G, as well as a uniform random
selection of an initial gaze state s;,;; € S and (b) subsequently
started alternatingly gazing in a fixed pace at the objects and
the subject based on the current policy m, starting from the
initial state s;,;. Meanwhile, the subject’s task was to guess
the robot’s choice from its gaze behavior and (c) indicate the
guess with a corresponding left-hand key-press in a self-paced
fashion. Upon keypress response, the robot stopped action
execution and turned its head back at the subject. (d) After a
delay of half a second (for avoiding any superposition of event-
related brain activity in response to the preceding robot head
movement), the robot announced the selected object to the
subject by lightening up the corresponding LED attached to
its head. This stimulus was delivered for 1s, during which the
ErrP response was decoded (the duration of a typical ErrP is
typically no longer than 600-800 ms (Chavarriaga et al 2014))
and (e) afterwards, the additional auditory robot speech feed-
back was provided to the subject. This trial structure applied to
CALIB and CORL-I, -II, and -IV. In CORL-III subjects were
not required to indicate their guesses via key-press responses
(no explicit decision making), ending the robot’s action execu-
tion phase, but only to observe the robot’s behavior. In CORL-
III, the duration of robot action execution was therefore fixed
to 15 gaze transitions. This parameter was determined empiri-
cally based on the average number of gaze transitions until
subject decision during the calibration sessions of a series of
pilot experiments. Other than step (b) and (c), no other parts of
the trial were affected by the modifications in CORL-III.

2.3.2. Robot gaze policy and behavior.

2.3.2.1. Intention/goal selection. The possible selections
the robot can choose from defined the agent’s set of goals/
intentions G = {go1, g02,go3}- The robot’s selection always
followed a uniform random choice among the three options.

2.3.2.2. Gaze policy. For realizing gaze behavior in robotic
systems, earlier works have proposed the use of probabilistic
state machines, e.g. for establishing joint attention (Lanillos
et al 2015). On this basis, the robot’s internal gaze policy
was realized as a discrete state-space model with four states,
Sﬂ' = {Sohjlnta SothObjx> SothObjy» shuman}a with SobjInt- galiﬂg at
selected object; Somonjxs Somobjy: gazing at one of the other
objects; and Spmaqn: gazing at human. An action is considered
a transition from one gaze state to another or remaining in the
current gaze state, leading to 16 possible state-action pairs:
A;j, i,j = Sx. The policy = (a;ls;) € [0,1] C R determined
the gaze behavior described by the probability of taking action
a; in state s; (gaze transition from state s; to s;). The decision
for the next action was always performed by a weighted ran-
dom selection among the four possible actions in the current
state (remain in current state or transit to one of the three other

states). This way of realizing action selection implicitely
introduced an exploration-exploitation behavior, an approach
used to foster successful policy convergence (Sutton and Barto
1998). In our case, equiprobable distributions among the set
of actions to be selected from, drive exploratory behavior and
divergent probabilities drive exploitation behavior.

2.3.2.3. Action (gaze pattern) execution. The robot gaze
behavior resulted from a fixed mapping between the
covert policy-states S, and the overt action-execution
states S, with corresponding pre-defined robot head
angles, pitch ¢ and yaw ©: S,., = {so1, So2, 03, sy}, With
So1: gazing at Oy, Yo = 25°, Og; = —20°; sp2: gazing at O,,
oy = 25°, Opy = 0°; 503 gazing at 03,3 = 25°, Op3 = 20°;
and sy: gazing at subject, ¥y = 0°, Oy = 0°. The mapping
depended on the selected object and was realized as follows:
Sﬂ'—)act (801) = {Sobjlnt—>01 > Sothobjx— 035 Sothobjy— 025 Shuman—>H}7
Sract (goz) = {SobjlnHoz, Sothobjx—03s  Sothobjy— 015 Shuman%H}’

Sr—sact (g03) = {SobjlnHos, Sothobjx—015> Sothobjy— 025 Shuman%H}-
During action execution, the robot performed one action

(state-transition) per 400ms (2.5 Hz); each gaze shift was
executed with a fixed speed of 15% and 10% of the maxi-
mum joint speed for pitch- and yaw-movements, respec-
tively. These parameters were manually tuned such that the
frequency of gaze shifts was maximized while preserving
smooth, non-jerky gazing behavior and approximately con-
forming to human timing of head posture shifts during con-
versation (Hadar et al 1984).

2.3.2.4. CALIB gaze policy. During the calibration session,
the gaze policy was pre-programmed with high probabili-
ties for the following state-action pairs, such that the prob-
abilities of all four possible actions in each state summed up
to one: p (aohjlnt‘shuman) = 0857 V4 (aobjlm|solh0bjx) = 0857
P (@objtnt|Sotnorjy) = 0.85, p (aowjime|sosjm) = 0.85 and low prob-
abilities of p = 0.05 for all remaining state-action pairs. This
resulted in gaze behavior in which the robot tended to fixate
the selected object or gaze at it more often.

2.3.2.5. CORL gaze policy initialization. At the beginning of
each co-adaptation run, all state-action pairs of the robot’s
gaze policy were initialized with p(a;|s;) = 0.25. This resulted
in uniform random gaze behavior which allowed no informed
guesses about the selected object (chance-level p = %). As the
co-adaptation runs proceeded, the gaze policy underwent one
update per trial based on the outcome of online decoded ErrPs.
The procedures for ErrP decoding and gaze policy update are
described in detail in the following sections.

2.3.3. Decoding of ErrPs.

2.3.3.1. EEG data recording. In all parts of the experiment,
EEG data were acquired with a Brain Products actiChamp
amplifier equipped with 32 active EEG electrodes arranged
according to an extended international 10-20 system (Homan
et al 1987) (FP1, FP2, F3, F4, F7, F8, FC1, FC2, FCS5, FC6,
C3, C4, T7, T8, CP5, CP6, P3, P4, P7, P§, TP9, TP10, Ol,
02, Fz, Cz, Pz, EOG1, EOG2, EOG3). All leads were ref-
erenced to the average of TP9 and TP10 (average mastoids
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referencing) and the sampling rate was set to 1024 Hz. The
impedance levels of all leads were kept below 10 k2. Three
channels were used for capturing electrooculogram (EOG1-3)
signals in three locations of the participant’s face (forehead,
left and right outer canthi) according to a method suggested
by Schlogl et al (2007). The data was transferred via USB
to a separate recording PC (Intel®Core™ i5 CPU 750@2.67
GHz). Data recording, pre-processing, and ErrP decoding was
performed using OpenViBe (Renard et al 2010) together with
customized processing functions implemented in MATLAB®.

2.3.3.2. Offline modeling of ErrP-decoder. For each sub-
ject, an individual ErrP-decoder was trained based on the
data collected during the calibration session. The following
procedure was implemented such that an ErrP-decoder was
automatically trained right after the calibration session to be
employable for online ErrP-decoding during the subsequent
co-adaptation runs (this procedure took about 5min): The
data was first filtered with a causal first-order Butterworth FIR
bandpass filter with cutoff frequencies 0.5 and 20 Hz. Then,
EOG activity (horizontal and vertical) was reduced in the data
by using a regression method proposed by Schlogl and col-
leagues (Schlogl et al 2007). The data was then re-referenced
to common average. The data was further segmented into data
epochs [0,1] sec for non-error- and error-events time-locked
to the moment of presentation of LED feedback. Data seg-
ments in which the subject’s guess did not match the feedback
of the robot were labeled as error-events, with no distinction
of whether the mismatch resulted from the human incorrect
guess or the robot’s false feedback; data segments in which
the guess matched the feedback were labeled as non-error-
events. All data segments were then normalized by subtracting
their individual means for each channel/segment. In the con-
text of single-trial classification of ErrPs, temporal features
extracted from the time series have been shown to lead to high
classification performances and mostly outperformed other
types of features (Iturrate et al 2010, 2015, Ehrlich and Cheng
2016). Therefore, temporal features were used in this work:
The arithmetic mean of the signal amplitude in pre-defined
windows relative to the moment of feedback presentation was
computed, such that all relevant components of the ErrP event-
related potential were covered (windows: 150-250ms, 200-
300ms, 250-350ms, 300-400ms, 350-450ms, 400-500 ms,
450-550ms), resulting in a total of 189 temporal features per
epoch (27 channels x 14 windows). The features were then
used to train a regularized version of the linear discriminant
analysis classifier (rLDA) (Friedman 1989). The rLDA clas-
sifier has been established as a robust method to discrimi-
nate mental states based on EEG signals in the field of BCI
(Blankertz et al 2011). The LDA discriminant function is the
hyperplane discriminating the feature space corresponding to
two classes: y (x) = sign(w’x + b), with x being the feature
vector, w being the normal vector to the hyperplane (or weight
vector), b the corresponding bias, and y(x) € {—1,1} the
classifier decision. The weight vector and bias were computed

~ ~ S S ~ ~ .
by w= (A2 — i) (X1 + ¥2)  and b = —w'(fiy + [ip), with

1i; being the class-wise sample means, and X; the class-wise
regularized covariance matrices. Regularization aims at

minimizing the covariance estimation error by penalizing very
small and large eigenvalues. This leads to robust covariance
estimates even for high dimensional feature spaces (Blankertz
et al 2011) as in our case. The regularized covariance matrices
were computed by ij =(1-XNZ+ M, withAe[0,1]CR
being the shrinkage parameter and 7 the identity matrix
(Schifer and Strimmer 2005). The optimal shrinkage param-
eter was determined using 10-times-10-fold cross-validation
based grid search for A = [0, 1] in steps of 0.05. To avoid the
classifier favoring one class over the other, each time and fold,
the number of trials per class was balanced by random pick
and replace (please note that the number of trials per class was
initially unbalanced with ~65% non-error and ~35% error tri-
als). The A with the highest cumulative accuracy of non-error
(true-negative rate, TNR) and error (true-positive rate, TPR)
recognition was selected and used to train the final rLDA clas-
sifier based on all trials of the calibration data. Also, in this
final step, the numbers of trials per class were balanced by
random pick and replace. To increase the likelihood that most
of the calibration trials were used at least once, this proce-
dure was repeated 1000 times and the weights w and bias b
of individual models were averaged to obtain a single final
rLDA classification model. The chance-level threshold for
this binary classification problem is 60.37% for both TNR and
TPR, given balanced number of trials for decoder calibration
(inverse cumulative binomial distribution with number of tri-
als nTrials = 150 % p,,, and p., = 0.35; probability of suc-
cess Psuccess = 0.5; confidence threshold p = 0.05). Subjects
in which either TNR or TPR did not exceed the above thresh-
old were excluded from all further analyses.

2.3.3.3. Online ErrP decoding. During the co-adaptation
runs, the ErrP-decoder trained based on the calibration data
was used to decode ErrPs in the ongoing EEG acquired from
the subject during interaction with the robot. The signals were
continuously bandpass filtered using a causal first-order But-
terworth FIR bandpass filter with cutoff frequencies 0.5 and
20 Hz (identical filter parameters as used during offline mod-
eling). EOG activity was continuously reduced by applying
the EOG decorrelation matrix obtained from the calibration
data. Finally, the continuous signals were re-referenced to
common average. Upon occurrence of a feedback event (robot
communicating decision via flashing one out of three LEDs),
the respective data segment (time-locked to the event) was
processed in the same way as in offline modeling: (1) single-
trial normalization, (2) temporal features extraction, and (3)
classification into non-error or error event using the rLDA
classifier trained on the calibration data.

2.3.4. ErrP-based agent policy adaptation. For the ErrP-
based policy adaptation we decided to employ a learning
paradigm based on policy gradient methods, a subform of RL
(Sutton and Barto 1998). Among others, the main advantages
of policy gradient methods compared to more sophisticated
RL methods, such as Q-learning are as follows: first, policy
gradient methods act on-policy directly which facilitates the
interpretation of policy adaptations in contrast to value func-
tion based approaches. This property comes in handy for the
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qualitative analysis of emergence of gaze behavior (see sec-
tion 3.3). Second, policy gradient learning has been proposed
as the method of choice for RL for humanoid robots as they
can deal with complex learning tasks involving many degrees
of freedom (Gullapalli et al 1994, Peters and Schaal 2008).
Although not in the focus of this paper, this property favors
the generalizability and scalablity of our approach to more
complex robot behavior and interaction scenarios. The policy
update function is given in equation (1) which was executed
at the end of each trial during the co-adaptation runs, starting
with the initial policy 7;,;, with equal probabilities for all state-
action pairs p(a;|s;) = 0.25. In short, for the computation of
the parameters of the new policy 7'+, to be employed in the
next trial, the parameters of the old policy 7' were merged
in a weighted fashion with the empirical distribution of the
observed state-action pairs during the current trial:

n
T (als) = 7' (@ls) + aRY d; )
k=1

with ¢ being the count of the current trial, R being the reward
derived from the ErrP-decoder class decision, with negative
reward R = —1 for a classified error event and positive reward
R = +1 for a classified non-error event, a being the learning
rate, and Y 7p_, af ; the occurrence count of action ¢; in state s;
of the action sequence k = (1,...,n) executed by the robot in
the current trial, with n depending on the subject’s self-paced
decision. Truncation and normalization was performed after
adding the policy gradient aR > ;_, aﬁi to the parameters of
the old policy 7': parameter updates of 7/*! which exceeded
the range {0, 1} € R were truncated to 0 and 1, respectively,
and all actions per state were then normalized to sum up to
one. Based on prior experiments, the learning rate was empiri-
cally set to @ = 0.1 such that convergence could be reached
relatively fast within a few policy updates. Fast convergence
was preferred given the limited number of 50 trials per co-
adaptation run®. The rationale behind including the empirical
distribution of observed state-action pairs into the policy gra-
dient was based on the assumption that more prominent state-
action pairs are likely to contribute more to the subject’s false
or correct guess compared to less prominent state-action pairs.
State-action pairs which occurred and hence were observed
more often than others were as such more strongly reinforced
(increase or decrease of corresponding state-action probability
depending on R) compared to state-action pairs which occurred
less prominently or never during the trial. This way, the policy
is updated to promote correct guessing or in other words, to fit
to the subject’s belief by quantitatively taking into account the
characteristic of the gazing behavior the subject has observed.

3. Results

Three out of 16 subjects did not meet the inclusion criterion
defined in section 2.3.3: Offline decoder performance did not
exceed the chance-level of 60.37% in either TPR, TNR or both
in subject s05, s10, and s10 (supplementary table 3 (stacks.iop.

2 Analysis and results of policy convergence is reported in section 3.2.

org/JINE/15/066014/mmedia)). These subjects were excluded
from subsequent data analyses. For the sake of full disclosure
of the obtained data, individual results of excluded subjects
are nevertheless reported and discussed separately.

3.1. ErrP decoding

Figure 3(a) shows the grand average ERP time-courses over
channel Cz time-locked to the onset of LED-feedback pre-
sentation by the robot and their topographical distribution
at specific time-points. The grand average difference (black
line in figure 3(a)) showed the typical N2-P3-complex
which has been reported consistently in the context of ErrPs
(Ferrez and Millan 2008a, Chavarriaga et al 2014, Spiiler
and Niethammer 2015, Iturrate et al 2015). The negative
deflection (N2-component, expected around 200-350ms)
was mostly pronounced frontocentrally around 300ms post
stimulus and the positive deflection (P3-component, expected
around 250-500ms) was mostly pronounced frontocentrally
around 400ms. The coefficient of determination based on
channel Cz reached highest values of 2 = 0.09 for 288 ms
and r? = 0.11 for 394 ms averaged across all subjects (n = 13)
which speaks in favor for a good overall separability of the
data. Figure 3(b) shows a comparison of the grand average
difference ERPs over Cz across calibration session (CALIB)
and co-adaptation runs I, II, IV (CORL)? with high temporal
resemblance between the experimental conditions.

The observations from the electrophysiological anal-
ysis were reflected in the single-trial classification perfor-
mances (see figure 3(c) and supplementary table 3). The
average offline ErrP decoder performance based on cali-
bration data cross-validation was overall 80.2% =+ 7.5%
(ACC, overall accuracy), with TNR of 81.2% 4+ 7.7%
and TPR of 79.2% + 7.5%. ErrP online decoding perfor-
mances were comparably high in accuracy (see figure 3(c)
and supplementary table 3) with ACC = 84.2% + 7.4%
for CORL-I, ACC =77.1% + 12.1% for CORL-II, and
ACC = 84.0% =+ 10.6% for CORL-IV. The main difference
observed in comparison to the offline cross-validation results
was a higher decoding performance for non-error events
(TNR: 86.5% + 11.7%, 82.5% + 18.3%, 90.4% =+ 5.8%
for CORL-I, II, IV, respectively) and a lower performance
for error events (TPR: 75.3% 4 12.0%, 70.4% =+ 15.4%,
74.4% £+ 17.0% for CORL-I, II, IV, respectively). This
performance bias was significant across subjects for all
co-adaptation runs (p = 0.026, p = 0.023, p = 0.002, for
CORL-I, II, TV, respectively; paired Wilcoxon signed rank
test, n = 13). Online decoding accuracies were on average
lower in CORL-II compared to CORL-I and CORL-IV.
This was consistent across subjects as decoding accuracies
differed significantly between CORL-I and CORL-II, and
between CORL-II and CORL-IV; no statistically signifi-
cant difference was found between CORL-I and CORL-IV
(pI,H = 0031, Plu—iv = 0046, Pi—1v = 0600, paired

3 Please note that no results are reported for CO-RL-III, since no subject
keypress responses (validation ground truth) were captured during this part
of the experiment.
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Table 2. Overview of individual results per subject in the order of columns from left to right: maximum coefficient of determination

r? across all channels within period 150-550ms for CALIB and CORL. Cross-validation ErrP-decoder accuracies based on CALIB

data. Average online ErrP-decoder accuracies during co-adaptation runs CORL-I,-II, and -IV. Within-subject Pearson’s spatiotemporal
correlation coefficients between average difference ERP time courses of all channels (error minus non-error) of CALIB and CORL (average

of all trials of LILIV) within period 150-550 ms.

7 ACC CALIB ACC CORL
rrznax CALIB rz .. CORL (offline CV) (%) (online acc.) (%) corr2 (CALIB,CORL)

s03 0.20 0.31 69.3 86.7 0.67

s04 0.34 0.41 86.3 91.3 0.72

s06 0.36 0.20 82.0 72.7 0.74

s07 0.25 0.31 81.4 82.7 0.58

s08 0.43 0.48 85.7 87.3 0.87

s09 0.46 0.29 92.8 86.7 0.82

sl 0.17 0.09 68.9 65.3 0.29

s12 0.30 0.23 84.7 90.0 0.41

sl4 0.39 0.27 88.7 77.3 0.72

sl5 0.18 0.31 72.4 85.3 0.70

s16 0.17 0.31 73.3 74.7 0.49

s17 0.36 0.54 81.8 88.0 0.77

s18 0.39 0.24 78.9 74.7 0.53

AVG 4 SD 0.31 £ 0.10 0.31 £ 0.12 80.5+t75 81.8 + 8.0 0.64 £+ 0.17
s05 0.12 0.12 50.5 50.7 —0.02

s10 0.10 0.19 64.4 28.7 0.13

s13 0.11 0.13 50.2 67.3 0.12

Wilcoxon signed rank test, n = 13). Possible explanations
are discussed in section 4. The theoretical chance-level for
online ErrP decoding per CORL is 62.0% (inverse cumula-
tive binomial distribution with number of trials nTrials = 50;
probability of success pguccess = 0.5; confidence threshold
p = 0.05) which was exceeded in all but three cases: s06/
CORL-1V, s11/CORL-II, s14/CORL-II (see supplementary
table 3).

Table 2 shows the overview of individual subject results.
The separability of the ErrPs are expressed in form of the
maximum coefficient of determination across all channels
12 x> separately for CALIB and the CORL data (all trials
of CORL-L-II, and -IV). The results show comparably low
values of 72, ~ 0.11 for the three subjects in which offline
decoding performance did not exceed the chance-level
threshold (s05, s10, s13), whereas all other subjects show
higher 72, values. This indicates that calibration failed in
these subjects, mainly due to their generally limited separa-
bility of ErrP responses (possible explanations are discussed
in section 4). As expected, the overall ErrP-decoder offline
cross-validation accuracies (ACC CALIB) and the online
average decoding accuracies (ACC CORL) reflected the
results obtained from the analysis of the coefficient of deter-
mination, with high separability resulting in higher decoding
accuracies. Table 2 furthermore reports Pearson’s spatiotem-
poral correlation coefficients between the average difference
of ERP time courses of all channels (error minus non-error)
within the period 150-550ms (period in which the tem-
poral features were extracted). The overall high correlation
coefficients of average 0.64 £ 0.17 reflect high spatiotem-
poral resemblance and support the notion that the decoded
ErrPs did not notably differ between CALIB and CORL
experimental sessions, despite the different experimental
conditions.

10

3.2. ErrP-based co-adaptation

To investigate the extent of co-adaptation between subject
and robot, we analyzed the development of two behavioral
measures in conjunction with the development of the policies
during the co-adaptation runs: (1) Guessing performance—
the development of the accuracy of correct guesses. This
measure was expected to increase if both subject and robot
converge to a consensus. (2) Gaze transitions until subject’s
decision—number of gaze transitions performed by the robot
until the subject made a decision. This measure was expected
to decrease as subjects and robot converge to a consensus.
(3) Policy convergence—the policy change of trial-by-trial
updates. This measure was expected to decrease if policies
converge.

3.2.1. Efficacy: guessing performance. The subject has three
1

3
At the beginning of each co-adaptation run the robot’s gaze
policy was initialized with equal probabilities for all actions.
This guaranteed a random guess in the first trial of all co-adap-
tation runs. Hence, if during the co-adaption runs, the subject’s
guessing performance exceeded chance-level, the robot’s
gaze policy must have been updated such that correct guess-
ing was facilitated for the subject; vice-versa, if guessing per-
formance did not increase above chance-level during the run,
then updates in the robot’s gaze policy did not facilitate the
subject’s task and/or were misleading. To investigate whether
the guessing performance depended on the ErrP decoder per-
formance during online operation, we computed Pearson’s
correlation coefficients between the overall guessing perfor-
mance (percentage of correct guesses within one run) and the
ErrP decoder accuracy (percentage of correctly classified tri-
als) across all subjects for each co-adaptation run separately.

objects to choose from and therefore chance-level was p =
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(a) Efficacy: guessing performance
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Figure 4. (a) Boxplot representation of guessing performance computed for consecutive segments of 10 trials, across subjects (n = 13).
Different panels correspond to different co-adaptation runs. In all three runs, the median guessing performance increased to 70%—90%.
The black dashed line indicates the threshold of the confidence interval of 70%. The numbers on top of the boxplots represent the ratio
of subjects which exceeded the threshold of the confidence interval in the corresponding segment. (b) Boxplot representation of gaze
transitions until subject decision computed within consecutive 10-trial segments, relative to the number of transition counted in the first
segment (black dashed line). In all three co-adaptation runs, the median number of transitions decreased by 15%—27% with significant
across subject deviations in some segments (boxes marked with a black asterisk). (c) Boxplot representation of policy change computed
within consecutive 10-trial segments. In all three co-adaptation runs, the median policy change decreased from A7m ~ 0.2 in the first
segment to A7 ~ 0.1 in the last segment, indicating policy convergence relative to increasing guessing performance.

Overall guessing performance correlated positively with the
online decoding accuracies in all three co-adaptation runs
with r =.71 (p = 0.006) for CORL-I, r = .79 (p = 0.001)
for CORL-II, and r = .47 (p = 0.1) for CORL-IV (Pearson’s
correlation, n = 13). These results indicate that improvements
in guessing performance depended on the ErrP decoder per-
formance during online operation, e.g. high ErrP decoder per-
formance fostering high guessing performance. As a result,
those subjects in which the ErrP-decoder calibration perfor-
mance resulted in below chance-level accuracies (s05, s10,
s13), no notable improvements in guessing performance were
observed in all co-adaptation runs of those subjects (compare
supplementary tables 3 and 4). To investigate improvements
of guessing performance over the course of co-adaptation
runs, each run was partitioned into five segments of 10 trials
each. Guessing performance was computed as percentage of
correct guesses in each segment (the 5% confidence threshold
is exceeded if =7 out of 10 trials were correct, one-sided bino-
mial test with chance level p = %). Figure 4(a) shows across
subject distributions of guessing performance from the start

(trials: 1-10) until the end (trials: 41-50) of each co-adaptation
run. The results show a median increase of guessing perfor-
mance from initial chance-level up to 90% in CORL-I, 70% in
CORL-II, and 80% in CORL-IV. In all three runs, the majority
of subjects exceeded the threshold of the confidence interval
(70%) at some point during the run. In CORL-I and CORL-II,
in the fourth segment, and in CORL-IV already in the second
segment. Despite the significant differences in ErrP-decoding
performance (see section 3.1), no significant differences of
overall guessing performance were observed between CORLs
(plfll = 0528, Plu—-1v = 0250, Pl—-1v = 0104, paired Wil-
coxon signed rank test, n = 13). Assuming a co-adaptation
run to be ‘successful’ when guessing performance >70%
in three subsequent segments (probability for exceeding by
chance: p = 7.6 * 107°, one-sided binomial test with chance
level p = %), then successful co-adaptation was achieved in
10 out of 13 subjects in at least one out of the three runs.
Two subjects achieved 3/3 successful runs (s09, s12); two
subjects achieved 2/3 successful runs (s03, s15), six subjects
achieved 1/3 successful runs (s06, s07, s08, sl14, s16, s18).

1
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Figure 5. (a) The plots represent a smoothed representation (over 10 trials) of the development of guessing performance (blue line)
together with the rate change of policy updates Ar (orange line). The black dashed line represents the threshold of confidence (70%)

for guessing performance. Single-trial subject guesses, corresponding ErrP-decoder classification decisions and misclassifications are
illustrated below the plots. (b) Shows the gaze behavior policies after different numbers of iterations (after trial: 10, 20, 30, 40). (c) Shows
the final policy at the end of the co-adaptation run. The states of the gazing policy are color-coded as follows: Spuman (YEllOW), Sopjm:
(green), Somobjxs Somonjy (grey). State-transitions with high probabilities are represented with thick red lines, low probabilities with thin blue
lines. This particular example shows convergence towards the ‘fixation” behavior around trial 30 and ‘nodding’ behavior towards the end of
the co-adaptation run (see section 3.3). Individual results of all subjects are detailed in supplementary figures 1-64.

An exemplary successful co-adaptation run (s09/CORL-I) is
visualized in figure 5. Individual results are detailed in supple-
mentary table 4 and supplementary figures 1-64.

3.2.2. Efficiency: gaze transitions until subject decision. The
absolute number of gaze transitions turned out to vary widely
among subjects, even during the calibration session, ranging
between 10 to 50 transitions (corresponding to a duration of
robot action execution between ~4-20s per trial) with aver-
age 13.0 £ 6.3 (CALIB), 15.7 + 7.0 (CORL-I), 15.0 + 6.9
(CORL-II), and 14.8 £ 10.7 (CORL-1V). Therefore, the num-
ber of gaze transitions until subject decision was analyzed
by partitioning each co-adaptation run into five segments of
10 trials each (in accordance with the analysis of guessing
performance) and counting the number of gaze transitions
within each of these 10-trial segments relative to the number
of transitions occurring during the first 10-trial segment. The
results are depicted in figure 4(b): in all three runs, the median
number of gaze transitions decreased by 15%—27% relative to
the first segment with across subject significant deviation in
some segments (p < 0.05, one-sample Wilcoxon signed rank
test). In CORL-I the number of gaze transitions decreased by
27.6% (median of percent reduction calculated across sub-
jects); in CORL-II by 19.2% and in CORL-IV by 15.6%. This
result illustrates that during the co-adaptation runs, subjects
not only became more precise in guessing, but also on average
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faster in deciding about the robot’s selected object. This sug-
gests that the robot’s gaze behavior adapted in a way that was
generally easier and quicker understood by participants. The
absolute number of gaze transitions until subject decision is
given in supplementary table 5.

3.2.3. Policy convergence. To quantify policy convergence,
the difference between subsequent policy iterations was
computed for each subject and CORL individually. This
was carried out by determining the value of the state-action
pair with the maximum difference between subsequent
policy iterations, termed as the policy change after trial k:
7rk|). In accordance with the previous
analyses of behavioral measures, policy convergence was
analyzed by partitioning each co-adaptation run into five seg-
ments of 10 trials each and averaging A within each of these
10-trial segments. The results are depicted in figure 4(c): in
all three runs, the median of A7 across subjects decreased
steadily from the first until the last segment from an initial
median of A7 ~ 0.2 to a final median of Am ~ 0.1. This
indicates that policies were on average converging relative
to an increasing guessing performance. The results further
indicate that not all policies converged within 50 trials as
the median policy change was still Aw ~ 0.1 in the last seg-
ment of all three runs. These findings are further discussed
in section 4. Policy convergence for an exemplary successful

Azt = max(|7*! —
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co-adaptation run (s09/CORL-I) is visualized in figure 5.
Individual results of policy convergence are detailed in sup-
plementary figures 1-64.

3.3. Emergence of gaze behavior

In addition to assessing the development of co-adaptation, we
were also interested in the nature of the gaze behavior which
emerged during the co-adaptation runs. This analysis allowed
for a qualitative assessment of CORL-III in which subjects
were not requested to explicitly indicate their guesses via key-
press responses in comparison with the other co-adaptation
runs. Since participants were not instructed to follow a par-
ticular strategy/policy, any gaze behavior was considered
acceptable and denoted as useful if it helped the subject to
perform better and faster in guessing the robot’s selected
object. Figure 6(a) shows an overview of the learned poli-
cies for the 13 subjects and all co-adaptation runs, including
CORL-III. Successful co-adaption was expected to be
reflected in policy convergence towards the end of the run.
Therefore the average of the policies of the last 10 trials (trial:
41-50) were depicted, with thick red lines representing high
probabilities and thin blue lines low probabilities. The policies
which emerged from successful co-adaptation runs are high-
lighted with a blue frame; the guessing performances of the
corresponding last 10 trials are furthermore depicted next to
the average policy. By qualitative visual inspection, we iden-
tified two different recurring policies which are furthermore
termed ‘fixation’ and ‘nodding’ behavior (see figure 6(b)).
The ‘fixation’ policy led to gaze behavior in which the robot
tended to fixate the selected object. Example cases are s03/
CORL-I, sO7/CORL-II, s15/CORL-I. In the ‘nodding’ policy
the robot was gazing alternatingly between the subject and the
selected object in a nodding-type fashion. Examples are s09/
CORL-I, s12/CORL-II, s18/CORL-IV. Also in CORL-III, the
robot’s gaze behavior converged in a few cases to one of the
two identified policies, e.g. ‘fixation’ behavior in s08 and s18,
and ‘nodding’ behavior in s16 (figure 6(a)). These cases indi-
cate that participants explicitly indicating their decision (as
in CORL-L, -II, -IV) was not required for successful co-adap-
tation, and suggests that the ErrP-based method presented
here also worked based on covert beliefs/decisions without
explicit actions linked to the decisions. Convergence to the
‘fixation’ behavior was expected, since it is very similar to
the pre-programmed policy used during the calibration task;
subjects likely could have used it as a proxy. The ‘nodding’
behavior was however unexpected, since it had not occurred
before during the calibration session and subjects could there-
fore not use it as a proxy. Interestingly, the number of cases
associated with convergence to the ‘nodding’ policy (7) were
approximately on par with those with convergence to the ‘fix-
ation’ policy (8). The ‘nodding’ behavior may have emerged
from subjects gradually finding it useful and in result having
adapted to and positively reinforced it. This observation ret-
rospectively confirms co-adaptation between subject and
robot, since if subjects were instructed to teach the robot a
specific behavior, previously unexpected behavior is unlikely
to emerge.
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4. Discussion

ErrPs, decoded from human subjects’ brain activity in real-
time during HRI, might be useful in the future to adapt the
behavior of artificial agents, such as robots, to better align
with human expectations, needs and conventions. We under-
stand our study as a logical extension of previous works
(Iturrate et al 2015, Salazar-Gomez et al 2017, Kim et al
2017) which demonstrated the potential of using ErrPs as
a teaching signal for robot skill learning. In contrast, our
experimental paradigm featured a scenario in which there
was no explicit ‘optimal’ or ‘correct’ behavior the robot was
required to adapt to, but where mutual adaptation between
human and robot was permitted; the ‘optimal’ robot policy
had to be negotiated between both parties in a co-adaptive
fashion. This introduced a considerable level of uncertainty
and complexity into the experimental setup as subjects could
not follow a specific task or proxy. With this relaxation of con-
straints in the experimental setup, we aimed at validating the
usability of ErrPs as an implicit feedback signal to improve
HRI where adaptation is possible from both interaction part-
ners. Despite the uncertainty and complexity introduced, we
observed significant improvements in interaction performance
across participants over the course of individual co-adaptation
runs, as indicated by behavioral measures of efficacy and effi-
ciency: The average percentage of correct guesses (efficacy)
increased from the initial chance-level (~33%) to 70%-90%
within 1040 trials (corresponding to 1-4 min), median across
subjects. Additionaly, the number of gaze transitions made by
the robot before the participant indicating his/her guess (effi-
ciency), relative to the corresponding number in the beginning
of the co-adaptation run, decreased on average by 15%—27%.
Hence, adaption of robot’s policy, based on the ErrPs col-
lected from the human interaction partner, was accompanied
by a higher performant and more efficient interaction.

Online single-trial ErrP decoding performance was on
average 81.8% 4 8.0% across 13 subjects which is compa-
rable to previously reported ErrP classification performances
used for closed-loop adaptation of robotic systems: Iturrate
et al (2015) obtained online decoding accuracies around 74%
across 12 subjects using temporal features combined with
LDA classification. Salazar-Gomez et al (2017) obtained
online decoding accuracies around 65% across four subjects
using correlation-based features and covariance features
based on spatially filtered EEG signals using xDAWN (Rivet
et al 2009). Based on post-hoc offline analyses, they reported
however about the presence of a secondary ErrP for which
they estimated a theoretical online decoding performance
around 80%. The most recent work by Kim et al (2017)
reported high online decoding performances of balanced
accuracy around 90% across seven subjects using temporal
features after XDAWN spatial filtering and classification using
linear support vector machines (SVM). They explain their
high performance being mainly a result of their data augmen-
tation approach based on decoding ErrPs in two separate time
windows (instead of just one). A limitation observed from the
online single-trial classification results of the present study
(section 3.1) is a consistent and significant across subjects
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Figure 6. (a) Overview of gaze policies averaged across the last 10 trials for 13 subjects and all co-adaptation runs. Successful co-
adaptation runs are highlighted with blue frames. The guessing performance during the corresponding last 10 trials is depicted next to the
policies. (b) Identified recurring policies: ‘fixation’ behavior in which the robot tended to fixate the selected object (examples: sO3/CORL-I,
s15/CORL-I, s08/CORL-III, s18/CORL-III); ‘nodding’ behavior in which the robot alternatingly gazed at the subject and the selected
object in a nodding-type fashion (examples: s09/CORL-II, s16/CORL-III, s18/CORL-1V).

bias towards the non-error class. This classification bias has
been reported consistently in the context of ErrP decoding
and related to the typical design of calibration protocols with
unbalanced number of samples per class (Chavarriaga et al
2014). As class-balancing was performed in the present study,
the systematic bias was likely related to the limited number
of 150 samples used for ErrP-decoder calibration. Although
the use of a regularized LDA may have partially counteracted
this (Schifer and Strimmer 2005), the use of a priori informa-
tion from other subjects (Iturrate et al 2011) or upsampling
the minority class, instead of downsampling the majority class
may have helped improving online decoding and are recom-
mended modifications for future works. ErrP decoder calibra-
tion resulted in chance-level performance in three subjects
(s05, s10, s13). The results reported in table 2 are informative
in that they show low 72, values compared to the remaining
subjects, indicating generally limited separability of their
ErrP responses. A post-hoc visual inspection of the raw EEG
data showed comparably strong artifact contamination in s10
(mainly noisy channels) and in s13 (mainly slow DC drifts);
the data of sO5 on the other hand was largely unaffected by
artifacts. This suggests that the low calibration performance
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was mainly due to the technical setup and could have been
resolved by repeating the experiment on a different day or by
adding automatic artifact rejection to the modeling procedure.
Why calibration failed in sO5 is currently unexplained; one
possibility could be that this subject had been insufficiently
concentrated on or engaged in the task. Across subjects,
ErrP online decoding performance was significantly lower in
CORL-II than in CORL-I and CORL-IV. Notably, this sys-
tematic performance drop was temporary and fully recovered
toward the end of the experiment in CORL-IV. Therefore it
is hypothesized that the observed performance drop is barely
related to technical reasons, but rather to the subject’s concen-
tration/task engagement level. CORL-II was a direct repeti-
tion of CORL-I, which might have had a negative effect on
the subject’s motivation and engagement. On the other hand,
CORL-1V followed CORL-III; the intermediate variation of
the experimental protocol with CORL-III might have had a
positive effect on the subject’s engagement during CORL-IV.
Despite noticeable differences in the median guessing per-
formance (figure 4(a)), the systematic drop in ErrP online
decoding performance had no significant effect on the overall
guessing performance in CORL-II.



J. Neural Eng. 15 (2018) 066014

S Ehrlich and G Cheng

The ErrP-decoder performance played an integral role in
successful co-adaptation, as indicated by positive correlations
between overall guessing performance and ErrP decoder per-
formance during online operation. Furthermore, on average,
policies converged in relation to increasing guessing perfor-
mance (see figures 4(a) and (c)) as indicated by a median
decrease of the policy rate change over the course of co-
adaptation runs. This supports the functionality of the policy
adaptation approach here adopted. We observed, however, a
number of cases with failed co-adaptation despite high ErrP
decoder performance (ACC > 75%). These cases might be
due to unknown human-related factors, e.g. variations in
engagement in the task, attention variations, or variations in
interpretation of the experiment. From a technical perspec-
tive, the policy adaptation approach used may have influenced
the stability of co-adaptation as well. In some of these failed-
cases there were temporary increases in guessing performance
followed by decreases (unlearning), indicating temporary, but
unstable learning (exemplary cases are s14/CORL-IV, s17/
CORL-II, see supplementary figures 36 and 46). The learning
approach here adopted does not enforce convergence to a
global optimum. This has the advantage that while converging
to one policy, bifurcations to other policies remain possible.
This flexibility might be particularly important in the con-
text of co-adaptation as changes of the human strategy are
likely and imaginable in the sense that a policy which was
previously optimal to the subject is neglected and replaced
by a different optimal policy. Exemplary cases supposedly
showing such policy re-adaptations are sO8/CORL-IV, s09/
CORL-II, and s14/CORL-I (supplementary figures 20, 22,
and 33). These cases show initial convergence interrupted
by periods of increased policy changes and subsequent sec-
ondary convergence. On the other hand, this flexibility, in
combination with a learning rate parametrized to promote
quick learning, may have encouraged instabilities or quick
unlearning, as the outcome of single trials interfered with the
learning process (e.g. sensibility to ErrP-decoder misclassifi-
cations). One possible way of stabilizing the policy adaptions
would be to use an adaptive learning rate based on the past
rewards (ErrP-decoder decisions), e.g. decreasing the learning
rate in case of increasing number of past non-error events.
However, whether, and to what extent a systematic control
of the learning process is recommendable in the context of
ErrP-based human-agent co-adaptation remains an open ques-
tion for future investigations. In our experiment the learning
process was limited to 50 iterations (trials), which turned out
insufficient for drawing definite conclusions about the co-
adaptation process in the long run. Therefore, an entry point
for follow-up studies is most importantly the investigation
of the dynamic effects of co-adaptation for longer periods or
during continuing interaction.

The analysis of emergence of gaze policies revealed that in
most successful co-adaptation runs the robot’s gaze behavior
converged to either one of two different policies: ‘fixation’
and ‘nodding’ behavior. While the ‘fixation’ behavior was
expected as it closely resembles the gaze behavior during the
calibration session, the ‘nodding’ behavior, in contrast, was
not expected. Although both behaviors are noticeably different
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and may be interpreted as conveying different meanings, an
alternative interpretation is that both are consistent in that
the target object is attended to more often than others. In that
sense, it is likely that the type of behavior to which the system
converged to depended on whether the alternating transitions
between Spungn and Sopjpy, Or the transition Sopjii—objin WETe
sampled more often in an early stage of the co-adaptation run.
Either way of interpreting the emergence of the two types of
behaviors supports the hypothesis of co-adaptation, since for
the subjects both strategies seemed valid despite having had
no explicit exposure to the ‘nodding’ behavior before the start
of the co-adaptation runs. On that note, one may argue about
why just two different behaviors emerged from the interac-
tion, given that the manifold of imaginable and possibly valid
strategies is much bigger (e.g. a slightly more complicated
gaze pattern or a consistent logical swap of the target object
with one of the other objects). This observation may be related
to constraints in human information processing and learning
of more complex statistical patterns but remains an open ques-
tion for future investigations. Further exploration of how robot
behavioral policies, as in this case the robot’s gazing policy,
develop during such interaction will provide useful insights
for improving the technical implementation of ErrP-based
mediation of human-robot co-adaptation and may likewise
provide insights about human information processing and
learning.

Our experiment featured a rather synthetic and highly
structured HRI scenario. This was necessary for an initial
proof of concept of our approach. Most simplifications and
procedural constraints were introduced to ensure reliable
decoding of ErrPs from EEG signals as well as for the pur-
pose of clean validation: For instance, our experiment was
designed in a way as if no explicit human feedback (key-press
response) was available, to allow quantitative validation of
ErrP-decoder performance as well as improvements in inter-
action performance indicative of co-adaptation. In this regard,
the additional human feedback in form of key-press responses
served only as a ground truth measure for post-hoc validation.
Comparison of learned gaze policies between CORL-III (no
explicit feedback) and the other conditions CORL-L-IL-IV
(with explicit feedback) suggested however that the explicit
human feedback was not a pre-requisite for successful co-
adaptation. However, despite the few examples of successful
co-adaptation in CORL-III, no definite conclusions can be
drawn from this part of the study. Notably, the results reported
in supplementary table 5 suggest that 15 gaze transition may
have not been enough for all subjects to build up an estimate
about the target object with a level of confidence high enough
to elicit observable (and decodeable) ErrPs. The design
choice of 15 gaze transitions may have hampered the out-
come of CORL-III; a follow-up study with a design focused
on the rationale and motivation of CORL-III is required to
consolidate the preliminary findings of this part of the study.
Furthermore, we used a perceptually simple symbolic feed-
back in form of a flashing LED for communicating the robot’s
selected object to the subject. This was necessary as earlier
works demonstrated limited ErrP decodeability in response
to perceptually more complex or gradually unfolding stimuli
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(Omedes et al 2015, Ehrlich and Cheng 2016, Welke et al
2017, Dias et al 2018). Subject-dependent individual ErrP-
decoders had to be calibrated. This is a typical procedure in
the field of EEG-based BCI research (Wolpaw et al 2002) and
necessary because of typically high inter-subject variations
of EEG signals and responses (Lotte and Guan 2010). Even
though ErrPs have been found to largely resemble in terms
of spatiotemporal activity patterns, earlier works have high-
lighted task-dependent ErrP signal variations that can nega-
tively affect decoding performance when applying decoders
across task (Iturrate et al 2013). Therefore, we employed a
calibration protocol which contextually resembled the co-
adaptation runs. Although ErrPs have been widely recog-
nized as a useful response to harvest from human subjects for
improving human-machine interaction, the design constraints
and simplifications introduced in the present study illus-
trate the current challenge of the method’s straightforward
applicability. Research efforts on different ends, such as on
improving decoding performance (Omedes et al 2015, Kim
et al 2017), on practicality of the EEG setups (Ehrlich ez al
2017) and decoder calibration (Iturrate et al 2011, Kim and
Kirchner 2016), and on the observability of ErrPs in response
to different stimuli and varying scenarios (Ehrlich and Cheng
2016, Welke et al 2017, Behncke er al 2018, Omedes et al
2018) are required to push ErrP-decoding towards more wide-
spread applicability.

5. Conclusion

In this paper, we experimentally demonstrated the usability
of EEG-based ErrPs as a feedback signal for mediating co-
adaptation in HRI. Our study featured a simplified HRI sce-
nario in which successful interaction depended on co-adaptive
convergence to a consensus between subject and robot. ErrPs
were decoded online from subjects’ ongoing EEG signals with
an avg. accuracy of 81.8 + 8.0% and utilized for adaptations
of the robot behavior, while the subject adapted to the robot by
reflecting upon its behavior. Adaptation of the robot behavior
was realized with an episode update strategy using ErrPs as a
delayed reward feedback signal for the past sequence of robot
actions. Successful co-adaptation was demonstrated by sig-
nificant improvements in interaction efficacy and efficiency
across subjects and by the robot behavioral policies that
emerged during the interaction.
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