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Abstract
Objective. Error-related potentials (ErrP) have been proposed as an intuitive feedback 
signal decoded from the ongoing electroencephalogram (EEG) of a human observer for 
improving human-robot interaction (HRI). While recent demonstrations of this approach 
have successfully studied the use of ErrPs as a teaching signal for robot skill learning, so 
far, no efforts have been made towards HRI scenarios where mutual adaptations between 
human and robot are expected or required. These are collaborative or social interactive 
scenarios without predefined dominancy of the human partner and robots being perceived 
as intentional agents. Here we explore the usability of ErrPs as a feedback signal from the 
human for mediating co-adaptation in human-robot interaction. Approach. We experimentally 
demonstrate ErrPs-based mediation of co-adaptation in a human-robot interaction study 
where successful interaction depended on co-adaptive convergence to a consensus between 
them. While subjects adapted to the robot by reflecting upon its behavior, the robot adapted 
its behavior based on ErrPs decoded online from the human partner’s ongoing EEG. Main 
results. ErrPs were decoded online in single trial with an avg. accuracy of 81.8%  ±  8.0% 
across 13 subjects, which was sufficient for effective adaptation of robot behavior. Successful 
co-adaptation was demonstrated by significant improvements in human-robot interaction 
efficacy and efficiency, and by the robot behavior that emerged during co-adaptation. These 
results indicate the potential of ErrPs as a useful feedback signal for mediating co-adaptation 
in human-robot interaction as demonstrated in a practical example. Significance. As robots 
become more widely embedded in society, methods for aligning them to human expectations 
and conventions will become increasingly important in the future. In this quest, ErrPs may 
constitute a promising complementary feedback signal for guiding adaptations towards human 
preferences. In this paper we extended previous research to less constrained HRI scenarios 
where mutual adaptations between human and robot are expected or required.

Keywords: electroencephalography (EEG), brain–computer interface (BCI), event-related 
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1.  Introduction

Over the last two decades, research on non-invasive brain–
computer interfaces (BCI) (Wolpaw et  al 2002) has gained 
increased interest in error-related potentials (ErrPs). ErrPs are 
event-related potentials (ERP) (Blankertz et al 2011) occur-
ring in response to the human recognition of both self-inflicted 
(Miltner et  al 1997, Falkenstein et  al 2000, Botvinick et  al 
2001, Holroyd and Coles 2002) and/or observed (van Schie 
et al 2004) erroneous actions. The underlying neural process 
is understood to be related to error-/performance monitoring 
in the brain, crucial for goal-directed behavior, decision 
making, error handling as well as adaptation and learning 
(Ridderinkhof et al 2004, Garrido et al 2009, Alexander and 
Brown 2011, Ullsperger et al 2014). ErrPs are a reliable effect 
observable in the human electroencephalogram (EEG) and 
their decoding from EEG signals has repeatedly shown to 
be robust across recording sessions (Chavarriaga and Millán 
2010) and high-performant with single trial classification 
accuracies around 70%–80% (Ferrez and Millán 2005, 2008a, 
Chavarriaga et al 2014). Schalk et al (2000) were among the 
first to propose the use of ErrPs for online improvements 
of BCI decoders. They demonstrated that ErrPs occur in 
response to the subject’s observation of the BCI delivering 
wrong output, e.g. mismatching the subject’s intended com-
mand the BCI was ought to execute. This discovery led to a 
series of studies simulating and demonstrating the efficacy 
of simultaneous ErrP-decoding for online adaptation of BCI 
decoders, in particular for sensorimotor BCIs (Blankertz et al 
2003, Ferrez and Millán 2008b), but also P300-based speller 
BCIs (Schmidt et al 2012, Spüler et al 2012a, 2012b).

More recently, ErrPs have been proposed as a feedback 
signal from the human for guided adaptations of physical 
robotic systems (Iturrate et  al 2010, 2015, Kreilinger et  al 
2012, Ehrlich and Cheng 2016, Kim et al 2017, Salazar-Gomez 
et al 2017, Welke et al 2017). The basic concept is to harvest 
ErrP responses from a human observer upon recognition of 
erroneous or inappropriate robot actions in order to adapt 
or improve the robotic system post-hoc or on-the-fly. This 
approach is particularly promising as a complementary method 
for validating and improving robotic systems and human-robot 
interaction (HRI), because: (1) ErrPs are naïve responses 
which require no mental effort from the human observer. (2) 
ErrPs can be decoded in real-time, allowing for online adap-
tations of the robotic device without interruption of ongoing 
interaction with the human partner. (3) ErrPs are understood to 
be sensitive to violations of expectations (Oliveira et al 2007, 
Sallet et al 2007) and as such comprise an implicit and imme-
diate feedback, informative (3a) for improving the robotic 
system to better align with the observer’s expectation, and 
(3b) possibly informative with regard to the observer’s overall 
assessment of the robotic system and/or the quality of interac-
tion. Recent works have successfully demonstrated the use of 
online decoded ErrPs from a human observer for intuitive rein-
forcement learning (RL) of robot skills, e.g. execution of tra-
jectories in an end effector reaching task (Iturrate et al 2015), 
association of objects in a sorting task (Salazar-Gomez et al 
2017), as well as recognition and imitation of human gestures 

(Kim et al 2017). While these works showed promising results 
of this highly innovative approach, they were primarily con-
centrated on using ErrPs as a teaching signal for robot skill 
learning. A question that remains open is whether this ErrP-
based feedback signal can also be useful in situations where 
both human and robot are required to adapt to each other to 
converge to a consensus in the given joint task. That is, situa-
tions in which there is no explicit ‘right’ behavior (policy) the 
robot is supposed to be taught, but the human partner may as 
well adapt to the robot. Approaching this question is important 
regarding human interaction with systems that have a form of 
intentional agency, e.g. HRI in the context of collaborative or 
social interactive scenarios. This contrasts to human interac-
tion with robotic systems that are primarily used as tools sup-
posed to fulfill an explicit function (explicit ‘right’ policy), e.g. 
a neural prosthesis.

The current study explored the usability of ErrPs as a feed-
back signal in the context of human-agent co-adaptation. The 
approach used is schematically described in Figure 1 and con-
ceptually assumes the interaction between two partners: (1) 
An intentional artificial agent with a policy π determining its 
behavior based on a set of behavioral states S , actions A, and 
goals/intentions G. (2) A human partner, interacting with that 
agent based on a belief of the agent’s policy π′. While the agent 
is provided feedback through online decoded ErrPs to gradually 
adapt its policy π to the human’s belief π′, the human partner 
may gradually adapt his/her belief π′ to the agent’s policy π 
by reflecting upon its behavior. As such, both systems (human 
and agent) are adaptive, allowing for mutual adaptation with 
the aim to converge to a consensus in form of an alignment of 
the human’s belief and the agent’s actual policy: π′

final ≈ πfinal.
The conceptual approach was implemented in form of a 

human-robot social interactive repeated guessing game where 
the human partner has to guess, from a humanoid robot’s 
gazing behavior, which of three available objects was selected 
by the robot. While the human’s task was to learn to infer 
the robot’s intentions/goals by observing and interpreting the 
robot’s gazing behavior, the robot’s task was to learn to convey 
its intentions/goals via gazing behavior to the human partner; 
efficient interaction required their convergence to a consensus 
by co-adaptive learning of both parties. We experimentally 
demonstrate that ErrPs decoded online from the ongoing EEG 
of the human partner can successfully be used to mediate and 
establish co-adaptation between human and robot as indicated 
by significant improvements in interaction performance.

With this extended perspective we aim to make the fol-
lowing contributions in line with ongoing research on the use 
of ErrPs for HRI:

	 •	�We demonstrate the usability of ErrPs for mediating 
co-adaptation in HRI. This relaxation of interaction con-
straints—permitting mutual adaptation—is particularly 
important with regard to HRI scenarios where the human 
partner does not have a predefined dominant role (prin-
cipal or teacher role). Scenarios, in which adaptations of 
the human to the robot are expected or even necessary for 
successful interaction, such as in collaborative or social 
interactive HRI.

J. Neural Eng. 15 (2018) 066014
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	 •	�Previous works adapted the robot’s behavior using ErrP 
feedback based on single, explicitely erroneous robot 
actions (Iturrate et  al 2015, Salazar-Gomez et  al 2017, 
Kim et al 2017). In more complex robot behavior, how-
ever, individual robot actions are more likely to occur in 
rapid succession and not to be temporally well isolated, 
the latter being a prerequisite for reliable ErrP decoding. 
Here we demonstrate robot adaptation based on ErrPs 
arising from and reflecting the human’s interpretation of 
the robot’s intention/goal, with the latter comprising a 
sequence of actions instead of a single occurrence. Along 
this line, we propose and successfully employ an ErrP-
based episode update strategy with delayed reward for 
online adaptation of the past sequence of robot actions.

The paper is structured as follows: in the subsequent sec-
tions  the experimental paradigm (section 2.1), design and 
tasks (section 2.2) are described in detail, followed by a 
thorough description of the implementation of the technical 
components of our approach (EEG-based online decoding of 
ErrPs and corresponding online adaptation of robot behavior) 
in section  2.3. The main results of efficacy of online ErrP 
decoding and human-robot co-adaptation are reported in sec-
tion 3, followed by a discussion of the results in light with 
the outlined contributions of this paper in section 4. Section 5 
concludes the paper.

2.  Methods

2.1.  Experimental paradigm

The experimental paradigm is schematically described in 
figure 2(a). Three objects were located in between subject and 

robot. The robot would select one among the three objects 
(unknown to the subject) which denoted its covert goal/
intention g and subsequently started executing a gaze pattern 
(action sequence) by turning its head (actions: A) towards the 
objects and the subject (states: S). The subject’s task was to 
guess the robot’s initially selected object from observing its 
gaze behavior: The subject may for instance consider which 
object the robot fixated more often or for the longer duration. 
Eventually, the robot would reveal the actual object it has ini-
tially selected, resulting in the subject experiencing a match 
or mismatch with the object he/she believed the robot had 
selected. In that moment the subject’s ongoing EEG signals 
would be classified into an error- (mismatch) or non-error 
(match) response and used as a negative or positive reward for 
adaptations of the robot’s gaze behavior policy π. Meanwhile, 
the subject may update his/her prior belief π′ about the robot’s 
gaze behavior to improve guessing in subsequent games. We 
hypothesize that by using the ErrP feedback for iterative 
robot adaptation would eventually converge to robot gazing 
behavior which facilitates the subject to correctly infer the 
robot’s selected object. To what extend this convergence 
is driven by the human adapting to the robot or the robot 
adapting to preconceptions of the human is deliberately kept 
flexible to investigate the feasibility of ErrP-based mediation 
of co-adaptation as outlined in the introduction.

2.2.  Experimental design

2.2.1.  Participants.  Eighteen healthy subjects participated in 
the study. The data of the first two subjects were discarded due 
to technical problems during the experiment. The remaining 
sixteen subjects were 7 females, average age: 29.2  ±  5.0, and 

Figure 1.  Conceptual approach: in interaction with an agent, the human holds a mental model (belief) of the agent’s policy π′ to predict 
its future behavior, which can be based on prior expectations π′

init   and is further adapted during interaction. ErrPs, online decoded from 
neural activity of the human partner are, provide as a critic for guided adaptation of the agent’s actual model π. This creates a two-party 
co-adaptive system allowing both human and agent seeking consensus in form of an alignment of the human’s belief and the agent’s actual 
policy: π′

final ≈ πfinal.
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all right-handed. The study was approved by the institutional 
ethics review board of the Technical University of Munich. 
All subjects were informed about the tests before its conduc-
tion. They participated voluntarily and gave written consent. 
Participants were paid an honorarium of 8 EUR/h for their 
participation.

2.2.2.  Experimental tasks.  An overview of the experimental 
tasks is provided in table  1. Each experiment consisted of 
two parts conducted in the following order: (1) open-loop 
calibration session (CALIB), (2) four closed-loop co-adapta-
tion sessions (CORL). In both parts, the subject was asked 
to repeatedly play the guessing game together with the robot 
(for the remainder of this paper, a single game is also called 
trial; for technical details about the trial structure the reader 
is referred to section 2.3.1 and figure 2(c)). The first part of 
the experiment (CALIB) had the purpose of collecting EEG 
data for calibrating subject-specific ErrP-decoders utilized 
afterwards for online ErrP-decoding during the co-adaptation 
sessions (CORL). During CALIB, the robot’s gaze behavior 
policy was pre-programmed and not adapting; during CORL, 
the robot’s gaze behavior policy was online adapted based on 
the ErrPs decoded from the subject’s EEG signals while inter-
acting with the robot. We opted for an experimental design 
integrating calibration and online application in a single 
recording session per subject to avoid the possibility of day-
to-day data variability. Furthermore, design choices on the 
number of trials for CALIB and CORL were made to keep 

the duration of the experiment around 1 h maximum to avoid 
subjects suffering from concentration lapses resulting in data 
quality degradation.

2.2.2.1.  Open-loop calibration session (CALIB).  During this 
experimental task, the robot’s gaze behavior followed a deter-
ministic behavior in which the robot tended to look at the 
selected object more often or remained gazing at it (for details 
about the technical implementation the reader is referred to 
section 2.3.2). With this gaze behavior, subjects achieved high 
accuracies in guessing the robot’s selected object (>95%). 
Participants performed in total 150 guessing games (trials) 
during the calibration session in three blocks of 50 trials each, 
resulting in a total duration of 20.4  ±  6.7 min. Pilot experi-
ments showed that subjects could perform 50 trials in a row 
without reporting notable concentration drops. The breaks in 
between blocks allowed the subjects to relax and prepare for 
the next block. To control the number of error events, false 
feedback was introduced with a probability of perr = 0.3. 
Usually, false feedback rates are chosen around 20% (Ferrez 
and Millán 2005, Chavarriaga et al 2014, Iturrate et al 2015). 
Here, an increased false feedback rate was used to obtain a 
higher number of error observations given the limited num-
ber of 150 trials. False feedback was realized as wrong robot 
feedback irrespective of whether the subject guessed cor-
rectly. This resulted in approximately 35% error (mismatch) 
events combining false feedback and subject guessing mis-
takes. The EEG data recorded during the calibration session 

Figure 2.  (a) Experimental paradigm: human subject and robot play a guessing game in which the robot covertly selects one out of three 
objects. Subsequently the robot produces a gaze pattern based on which the subject has to guess the secret object. The subject’s brain 
responses are measured (marked in green) and used as a feedback signal to adapt the robot’s gaze behavior policy π, while the subject may 
adapt the prior belief π′ about the robot’s gaze behavior policy. (b) Experimental setup from the perspective of a subject. (c) Trial structure 
of a single guessing game with the corresponding moment of ErrP decoding marked in green.
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was afterwards used to build a subject-specific ErrP-decoder 
subsequently to be employed for online ErrP-decoding during 
the co-adaptation sessions. During CALIB, subjects indicated 
their guess by keypress and received feedback about their cor-
rect and wrong number of guesses displayed on a computer 
screen. Since the calibration session had a comparably long 
duration and was rather monotonous (non-adaptive robot 
behavior), this feedback was introduced as a means for self-
monitoring to encourage subjects to improve and maintain 
their performance throughout the session.

2.2.2.2.  Closed-loop co-adaptation sessions (CORL).  After 
the calibration session, each participant performed four sepa-
rate online co-adaptation runs, each consisting of 50 trials, 
with an average duration of approx. 6–8 min per run (corre
sponding to the duration of one block during CALIB). We 
opted for the conduction of several independent runs per 
subject, as co-adaptation may fail due to uncontrollable and 
random factors (e.g. stochastic sampling of robot actions, 
self-paced subject response; further details are provided in 
section  2.3). Furthermore, a single CORL was kept below 
10 min to restrict subject frustration if co-learning would turn 
out unsuccessful. In the beginning of each run the robot gaze 
behavior policy was reinitialized such that gazing was uni-
formly random distributed among the three objects and there-
fore allowed for no informed guesses of the selected object 
(chance-level p = 1/3). In each trial, the subject’s ErrP 

response to the robot revealing its initially selected object was 
decoded online from the ongoing EEG signals and utilized 
to update the robot’s gazing behavior policy. In three of the 
four runs (CORL-I, CORL-II, CORL-IV), the procedure was 
identical to the open-loop calibration session, in that subjects 
indicated their guess by keypress. In CORL-III, subjects were 
asked to observe the robot’s behavior for a pre-defined time 
only, without communicating their guesses via keypress. We 
introduced this additional run to investigate whether explicit 
actions linked to the decisions (as in the form of keypresses) 
of the subject were required or whether covert beliefs/deci-
sions (sole mental reflection without explicit actions) are suf-
ficient for successful co-adaptation. As such, CORL-III served 
as a preliminary usability test of the proposed ErrP-based 
approach in a more naturalistic and less constrained setting, 
where no explicit information from the subject is available. 
Unlike in CALIB, in CORL, no feedback on the number of 
correct guesses was provided to subjects. This had no notable 
effect on the observability and decodeability of ErrPs (see sec-
tion 3.1, and figure 3(b)).

2.2.3.  Instructions.  Subjects were asked to guess the robot’s 
selected object by inferring information from its gazing 
behavior. They were, however, not given any specific hints 
on what to focus in particular. After the calibration session, 
subjects were furthermore informed that during the online co-
adaptation runs the robot’s gaze behavior may change as it is 

Table 1.  Overview of the experimental tasks and corresponding purpose in the order of conduction, covering part 1 (open-loop calibration 
session—CALIB), and part 2 (four separate closed-loop co-adaptation sessions—CORL-I,-II,-III, and -IV). The duration of the entire 
experiment was approximately 1 h per subject, including breaks.

Part Short name Short description and purpose Duration

1 Open-loop calibration 
session

CALIB Task: To guess the robot’s selected object, indicating guess via key-
press. # trials: 150 (3 blocks of 50 trials each)

15–25 min

Purpose: Collect EEG data for subsequent calibration of subject-specific 
ErrP-decoders
Robot gaze policy: pre-programmed and non-adaptive. Elicitation 
of ErrPs with random occurrences of false-feedback events with a 
probability of perr = 0.3.

ErrP decoder 
calibration

Automatic calibration of subject-specific ErrP decoder based on data 
collected during CALIB

5 min

2 Closed-loop co-adaptation 
sessions

CORL-I Task: To guess the robot’s selected object, indicating guess via key-
press. # trials: 50

6–8 min

Purpose: Online application of ErrP decoder for mediating human-robot 
co-adaptation
Robot gaze policy: Initial uniformly random gaze behavior; updated 
after each trial based on the classified outcome of the corresponding 
online decoded ErrP

CORL-II Same as CORL-I with reinitialization of gaze policy 6–8 min

CORL-III Task: To guess the robot’s selected object without overtly indicating 
guesses via key-press (compared to CORL-I,-II, and -IV). Robot 
performed gaze behavior for a pre-defined fixed duration. # trials: 50

6–8 min

Purpose: Online application of ErrP decoder for mediating human-robot 
co-adaptation without explicit decisions from the human partner (sole 
observation and mental reflection upon the robot’s gaze behavior)
Robot gaze policy: same as in CORL-I,-II, and -IV with reinitialization 
of gaze policy

CORL-IV Same as CORL-I with reinitialization of gaze policy 6–8 min

J. Neural Eng. 15 (2018) 066014
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subject to adaptations based on their ongoing brain activity. 
No further details about the implementation of the experiment 
were provided.

2.3.  Systems: human, agent, brain-machine interface

2.3.1.  Systems overview.  Figure 2(b) shows the experimental 
setup from the perspective of a subject sitting approximately 
150 cm in front of a humanoid robot. The robotic platform 
chosen for the experiment was the humanoid robot NAO. 
NAO is a commercially available (SoftBank Robotics) 58 cm 
tall humanoid robot with 21–25 degrees of freedom (Gouail-
lier et  al 2008) that was controlled in this experiment by a 
program running on an external PC connected to the robot via 
local area network (LAN). The only body part of the robot 
used was the head with pitch- and yaw-movements. Three 
arbitrarily chosen physical objects were located on top of 
cylindrical containers in fixed positions between the subject 
and the robot (O1: a metal Buddha head—left, O2: an electric 
circuit board—middle, O3: a metal brain keychains—right). 
The robot’s forehead was equipped with three identical green 
light emitting diodes (LED) geometrically aligned with the 
three objects and placed in a distance of approx. 1.5 cm from 
each other (see figure 2(b), bottom left corner). The LEDs were 
controlled via a 4-channel digital analog converter (Phidget). 
We used the LEDs in the experiment as the visual feedback 
to communicate the robot’s initially selected object to the 
subject (figure 2(a): ‘feedback’) with a fixed representation 

(O1: left LED, O2: middle LED, O3: right LED). Subsequently, 
subjects received an additional auditory feedback in form of 
the robot speaking out the name of the chosen object (O1: 
‘The head’, O2: ‘The circuit’, O3: ‘The brain’). The robot’s 
choice was communicated in two ways for the following 
reasons: LED-based feedback was introduced because of its 
high saliency and perceptual simplicity, expected to result in 
more distinct brain-responses in contrast to perceptually com-
plex or gradually unfolding stimuli which have been reported 
to result in attenuated ErrP responses (Omedes et  al 2015, 
Ehrlich and Cheng, 2016, Welke et al 2017). The subsequent 
additional robot speech feedback was introduced to increase 
subject’s engagement in the experiment, as robot talking 
has been reported to foster engagement in HRI (Sidner et al 
2004). Subjects were instructed to particularly attend the LED 
feedback. Behind the robot, a computer screen was located 
which served to provide the subject with additional informa-
tion about the number of correct (left, green) versus incorrect 
(right, red) guesses during the calibration session (CALIB). 
During the co-adaptation runs (CORL), this feedback was not 
provided. Participant responses (figure 2(a): ‘decision mak-
ing’) were performed with the left hand and registered with 
the following keys of an ordinary computer keyboard (O1: key 
‘1’, O2: key ‘2’, O3: key ‘3’). The experiment was realized in a 
single program using the Python-based NAOqi-library (robot 
control), the Phidgets-library (LED control), Psychopy library 
(keyboard and screen control) (Peirce 2007) and executed on 
an Intel®Core™ i5 CPU 750@2.67 GHz. Furthermore, this 

Figure 3.  (a) Grand average (n  =  13) ERP time-courses over channel Cz time-locked to the onset of feedback presentation for each class 
of events (blue: non-error, red: error) and the difference grand average (black: error minus non-error). The r²-values for between non-error 
and machine-error are depicted below the plot, with brighter colors indicating higher values. The difference grand average is furthermore 
depicted as topographic plots for the main peaks above each plot and in form of a spatio-temporal activity matrix across all channels and 
specific time points above the plot (Figure style adopted from Iturrate et al (2013).) (b) Comparison of the difference grand average across 
the calibration session and the co-adaptation runs I, II, and IV. The comparison shows high resemblance of the difference ERPs across 
experimental sessions. (c) ErrP single trial classification performance for offline cross-validation based on the calibration data and online 
decoding performance during the co-adaptation runs. The black dashed lines indicate the theoretical chance-level of 60.37% for CALIB and 
62.0% for individual CORLs. For CALIB, chance-level was exceeded in all subjects; for CORL, chance-level was exceeded in all but three 
cases (s11/CORL-II, s14/CORL-II, s06/CORL-IV). Online decoding accuracies were significantly different between CORL-I and CORL-II 
and between CORL-II and CORL-IV, indicated by the asterisks.
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program received input from the ErrP decoder during the co-
adaptation runs which was executed on a different PC via the 
TCP/IP-based ‘labstreaminglayer’ protocol (Kothe 2014).

2.3.1.1. Trial (guessing game) structure.  Figure 2(c) shows the 
structure of a single trial: (a) the trial started with the robot gaz-
ing at the human, and performing a uniform random selection 
of either one of the objects g ∈ G, as well as a uniform random 
selection of an initial gaze state sinit ∈ S  and (b) subsequently 
started alternatingly gazing in a fixed pace at the objects and 
the subject based on the current policy π, starting from the 
initial state sinit. Meanwhile, the subject’s task was to guess 
the robot’s choice from its gaze behavior and (c) indicate the 
guess with a corresponding left-hand key-press in a self-paced 
fashion. Upon keypress response, the robot stopped action 
execution and turned its head back at the subject. (d) After a 
delay of half a second (for avoiding any superposition of event-
related brain activity in response to the preceding robot head 
movement), the robot announced the selected object to the 
subject by lightening up the corresponding LED attached to 
its head. This stimulus was delivered for 1 s, during which the 
ErrP response was decoded (the duration of a typical ErrP is 
typically no longer than 600–800 ms (Chavarriaga et al 2014)) 
and (e) afterwards, the additional auditory robot speech feed-
back was provided to the subject. This trial structure applied to 
CALIB and CORL-I, -II, and -IV. In CORL-III subjects were 
not required to indicate their guesses via key-press responses 
(no explicit decision making), ending the robot’s action execu-
tion phase, but only to observe the robot’s behavior. In CORL-
III, the duration of robot action execution was therefore fixed 
to 15 gaze transitions. This parameter was determined empiri-
cally based on the average number of gaze transitions until 
subject decision during the calibration sessions of a series of 
pilot experiments. Other than step (b) and (c), no other parts of 
the trial were affected by the modifications in CORL-III.

2.3.2.  Robot gaze policy and behavior.
2.3.2.1.  Intention/goal selection.    The possible selections 
the robot can choose from defined the agent’s set of goals/
intentions G = {gO1, gO2, gO3}. The robot’s selection always 
followed a uniform random choice among the three options.

2.3.2.2.  Gaze policy.  For realizing gaze behavior in robotic 
systems, earlier works have proposed the use of probabilistic 
state machines, e.g. for establishing joint attention (Lanillos 
et al 2015). On this basis, the robot’s internal gaze policy 
was realized as a discrete state-space model with four states, 
Sπ = {sobjInt , sothObjx, sothObjy, shuman}, with sobjInt: gazing at 
selected object; sothObjx, sothObjy: gazing at one of the other 
objects; and shuman: gazing at human. An action is considered 
a transition from one gaze state to another or remaining in the 
current gaze state, leading to 16 possible state-action pairs: 
Ai,j, i, j = Sπ. The policy π (ai|sj) ∈ [0, 1] ⊂ R determined 
the gaze behavior described by the probability of taking action 
ai in state sj (gaze transition from state sj to si). The decision 
for the next action was always performed by a weighted ran-
dom selection among the four possible actions in the current 
state (remain in current state or transit to one of the three other 

states). This way of realizing action selection implicitely 
introduced an exploration-exploitation behavior, an approach 
used to foster successful policy convergence (Sutton and Barto 
1998). In our case, equiprobable distributions among the set 
of actions to be selected from, drive exploratory behavior and 
divergent probabilities drive exploitation behavior.

2.3.2.3. Action (gaze pattern) execution.  The robot gaze 
behavior resulted from a fixed mapping between the 
covert policy-states Sπ and the overt action-execution 
states Sact with corresponding pre-defined robot head 
angles, pitch ψ and yaw Θ: Sact = {sO1, sO2, sO3, sH}, with 
sO1: gazing at O1, ψO1 = 25◦, ΘO1 = −20◦; sO2: gazing at O2, 
ψO2 = 25◦, ΘO2 = 0◦; sO3: gazing at O3, ψO3 = 25◦, ΘO3 = 20◦; 
and sH : gazing at subject, ψH = 0◦, ΘH = 0◦. The mapping 
depended on the selected object and was realized as follows: 
Sπ→act (gO1)={sobjInt→O1, sothobjx→O3, sothobjy→O2, shuman→H}, 
Sπ→act (gO2)={sobjInt→O2, sothobjx→O3, sothobjy→O1, shuman→H}, 
Sπ→act (gO3) = {sobjInt→O3, sothobjx→O1, sothobjy→O2, shuman→H}. 
 During action execution, the robot performed one action 
(state-transition) per 400 ms (2.5 Hz); each gaze shift was 
executed with a fixed speed of 15% and 10% of the maxi-
mum joint speed for pitch- and yaw-movements, respec-
tively. These parameters were manually tuned such that the 
frequency of gaze shifts was maximized while preserving 
smooth, non-jerky gazing behavior and approximately con-
forming to human timing of head posture shifts during con-
versation (Hadar et al 1984).

2.3.2.4. CALIB gaze policy.  During the calibration session, 
the gaze policy was pre-programmed with high probabili-
ties for the following state-action pairs, such that the prob-
abilities of all four possible actions in each state summed up 
to one: p (aobjInt|shuman) = 0.85, p (aobjInt|sothObjx) = 0.85, 
p (aobjInt|sothObjy) = 0.85, p (aObjInt|sObjInt) = 0.85 and low prob-
abilities of p = 0.05 for all remaining state-action pairs. This 
resulted in gaze behavior in which the robot tended to fixate 
the selected object or gaze at it more often.

2.3.2.5. CORL gaze policy initialization.  At the beginning of 
each co-adaptation run, all state-action pairs of the robot’s 
gaze policy were initialized with p(ai|sj) = 0.25. This resulted 
in uniform random gaze behavior which allowed no informed 
guesses about the selected object (chance-level p = 1

3). As the 
co-adaptation runs proceeded, the gaze policy underwent one 
update per trial based on the outcome of online decoded ErrPs. 
The procedures for ErrP decoding and gaze policy update are 
described in detail in the following sections.

2.3.3.  Decoding of ErrPs.
2.3.3.1.  EEG data recording.    In all parts of the experiment, 
EEG data were acquired with a Brain Products actiChamp 
amplifier equipped with 32 active EEG electrodes arranged 
according to an extended international 10–20 system (Homan 
et al 1987) (FP1, FP2, F3, F4, F7, F8, FC1, FC2, FC5, FC6, 
C3, C4, T7, T8, CP5, CP6, P3, P4, P7, P8, TP9, TP10, O1, 
O2, Fz, Cz, Pz, EOG1, EOG2, EOG3). All leads were ref-
erenced to the average of TP9 and TP10 (average mastoids 
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referencing) and the sampling rate was set to 1024 Hz. The 
impedance levels of all leads were kept below 10 kΩ. Three 
channels were used for capturing electrooculogram (EOG1-3) 
signals in three locations of the participant’s face (forehead, 
left and right outer canthi) according to a method suggested 
by Schlögl et  al (2007). The data was transferred via USB 
to a separate recording PC (Intel®Core™ i5 CPU 750@2.67 
GHz). Data recording, pre-processing, and ErrP decoding was 
performed using OpenViBe (Renard et al 2010) together with 
customized processing functions implemented in MATLAB®.

2.3.3.2.  Offline modeling of ErrP-decoder.  For each sub-
ject, an individual ErrP-decoder was trained based on the 
data collected during the calibration session. The following 
procedure was implemented such that an ErrP-decoder was 
automatically trained right after the calibration session to be 
employable for online ErrP-decoding during the subsequent 
co-adaptation runs (this procedure took about 5 min): The 
data was first filtered with a causal first-order Butterworth FIR 
bandpass filter with cutoff frequencies 0.5 and 20 Hz. Then, 
EOG activity (horizontal and vertical) was reduced in the data 
by using a regression method proposed by Schlögl and col-
leagues (Schlögl et al 2007). The data was then re-referenced 
to common average. The data was further segmented into data 
epochs [0,1] sec for non-error- and error-events time-locked 
to the moment of presentation of LED feedback. Data seg-
ments in which the subject’s guess did not match the feedback 
of the robot were labeled as error-events, with no distinction 
of whether the mismatch resulted from the human incorrect 
guess or the robot’s false feedback; data segments in which 
the guess matched the feedback were labeled as non-error-
events. All data segments were then normalized by subtracting 
their individual means for each channel/segment. In the con-
text of single-trial classification of ErrPs, temporal features 
extracted from the time series have been shown to lead to high 
classification performances and mostly outperformed other 
types of features (Iturrate et al 2010, 2015, Ehrlich and Cheng 
2016). Therefore, temporal features were used in this work: 
The arithmetic mean of the signal amplitude in pre-defined 
windows relative to the moment of feedback presentation was 
computed, such that all relevant components of the ErrP event-
related potential were covered (windows: 150–250 ms, 200–
300 ms, 250–350 ms, 300–400 ms, 350–450 ms, 400–500 ms, 
450–550 ms), resulting in a total of 189 temporal features per 
epoch (27 channels  ×  14 windows). The features were then 
used to train a regularized version of the linear discriminant 
analysis classifier (rLDA) (Friedman 1989). The rLDA clas-
sifier has been established as a robust method to discrimi-
nate mental states based on EEG signals in the field of BCI 
(Blankertz et al 2011). The LDA discriminant function is the 
hyperplane discriminating the feature space corresponding to 
two classes: y (x) = sign(wTx + b), with x being the feature 
vector, w being the normal vector to the hyperplane (or weight 
vector), b the corresponding bias, and y (x) ∈ {−1, 1} the 
classifier decision. The weight vector and bias were computed 

by w = (µ̂2 − µ̂1)(Σ̃1 + Σ̃2)
−1

 and b = −wT(µ̂1 + µ̂2), with 

µ̂j being the class-wise sample means, and Σ̃j  the class-wise 
regularized covariance matrices. Regularization aims at 

minimizing the covariance estimation error by penalizing very 
small and large eigenvalues. This leads to robust covariance 
estimates even for high dimensional feature spaces (Blankertz 
et al 2011) as in our case. The regularized covariance matrices 
were computed by Σ̃j = (1 − λ) Σj + λI, with λ ∈ [0, 1] ⊂ R 
being the shrinkage parameter and I the identity matrix 
(Schäfer and Strimmer 2005). The optimal shrinkage param
eter was determined using 10-times-10-fold cross-validation 
based grid search for λ = [0, 1] in steps of 0.05. To avoid the 
classifier favoring one class over the other, each time and fold, 
the number of trials per class was balanced by random pick 
and replace (please note that the number of trials per class was 
initially unbalanced with ~65% non-error and ~35% error tri-
als). The λ with the highest cumulative accuracy of non-error 
(true-negative rate, TNR) and error (true-positive rate, TPR) 
recognition was selected and used to train the final rLDA clas-
sifier based on all trials of the calibration data. Also, in this 
final step, the numbers of trials per class were balanced by 
random pick and replace. To increase the likelihood that most 
of the calibration trials were used at least once, this proce-
dure was repeated 1000 times and the weights w and bias b 
of individual models were averaged to obtain a single final 
rLDA classification model. The chance-level threshold for 
this binary classification problem is 60.37% for both TNR and 
TPR, given balanced number of trials for decoder calibration 
(inverse cumulative binomial distribution with number of tri-
als nTrials = 150 ∗ perr and perr = 0.35; probability of suc-
cess psuccess = 0.5; confidence threshold p = 0.05). Subjects 
in which either TNR or TPR did not exceed the above thresh-
old were excluded from all further analyses.

2.3.3.3.  Online ErrP decoding.  During the co-adaptation 
runs, the ErrP-decoder trained based on the calibration data 
was used to decode ErrPs in the ongoing EEG acquired from 
the subject during interaction with the robot. The signals were 
continuously bandpass filtered using a causal first-order But-
terworth FIR bandpass filter with cutoff frequencies 0.5 and 
20 Hz (identical filter parameters as used during offline mod-
eling). EOG activity was continuously reduced by applying 
the EOG decorrelation matrix obtained from the calibration 
data. Finally, the continuous signals were re-referenced to 
common average. Upon occurrence of a feedback event (robot 
communicating decision via flashing one out of three LEDs), 
the respective data segment (time-locked to the event) was 
processed in the same way as in offline modeling: (1) single-
trial normalization, (2) temporal features extraction, and (3) 
classification into non-error or error event using the rLDA 
classifier trained on the calibration data.

2.3.4.  ErrP-based agent policy adaptation.  For the ErrP-
based policy adaptation we decided to employ a learning 
paradigm based on policy gradient methods, a subform of RL 
(Sutton and Barto 1998). Among others, the main advantages 
of policy gradient methods compared to more sophisticated 
RL methods, such as Q-learning are as follows: first, policy 
gradient methods act on-policy directly which facilitates the 
interpretation of policy adaptations in contrast to value func-
tion based approaches. This property comes in handy for the 
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qualitative analysis of emergence of gaze behavior (see sec-
tion 3.3). Second, policy gradient learning has been proposed 
as the method of choice for RL for humanoid robots as they 
can deal with complex learning tasks involving many degrees 
of freedom (Gullapalli et al 1994, Peters and Schaal 2008). 
Although not in the focus of this paper, this property favors 
the generalizability and scalablity of our approach to more 
complex robot behavior and interaction scenarios. The policy 
update function is given in equation (1) which was executed 
at the end of each trial during the co-adaptation runs, starting 
with the initial policy πinit  with equal probabilities for all state-
action pairs p(ai|sj) = 0.25. In short, for the computation of 
the parameters of the new policy πt+1, to be employed in the 
next trial, the parameters of the old policy πt  were merged 
in a weighted fashion with the empirical distribution of the 
observed state-action pairs during the current trial:

πt+1 (ai|sj) = πt (ai|sj) + αR
n∑

k=1

ak
i,j� (1)

with t being the count of the current trial, R being the reward 
derived from the ErrP-decoder class decision, with negative 
reward R = −1 for a classified error event and positive reward 
R = +1 for a classified non-error event, α being the learning 
rate, and 

∑n
k=1 ak

i,j  the occurrence count of action ai in state sj 
of the action sequence k = (1, . . . , n) executed by the robot in 
the current trial, with n depending on the subject’s self-paced 
decision. Truncation and normalization was performed after 
adding the policy gradient αR

∑n
k=1 ak

i,j to the parameters of 
the old policy πt : parameter updates of πt+1 which exceeded 
the range {0, 1} ∈ R were truncated to 0 and 1, respectively, 
and all actions per state were then normalized to sum up to 
one. Based on prior experiments, the learning rate was empiri-
cally set to α = 0.1 such that convergence could be reached 
relatively fast within a few policy updates. Fast convergence 
was preferred given the limited number of 50 trials per co-
adaptation run2. The rationale behind including the empirical 
distribution of observed state-action pairs into the policy gra-
dient was based on the assumption that more prominent state-
action pairs are likely to contribute more to the subject’s false 
or correct guess compared to less prominent state-action pairs. 
State-action pairs which occurred and hence were observed 
more often than others were as such more strongly reinforced 
(increase or decrease of corresponding state-action probability 
depending on R) compared to state-action pairs which occurred 
less prominently or never during the trial. This way, the policy 
is updated to promote correct guessing or in other words, to fit 
to the subject’s belief by quantitatively taking into account the 
characteristic of the gazing behavior the subject has observed.

3.  Results

Three out of 16 subjects did not meet the inclusion criterion 
defined in section 2.3.3: Offline decoder performance did not 
exceed the chance-level of 60.37% in either TPR, TNR or both 
in subject s05, s10, and s10 (supplementary table 3 (stacks.iop.

org/JNE/15/066014/mmedia)). These subjects were excluded 
from subsequent data analyses. For the sake of full disclosure 
of the obtained data, individual results of excluded subjects 
are nevertheless reported and discussed separately.

3.1.  ErrP decoding

Figure 3(a) shows the grand average ERP time-courses over 
channel Cz time-locked to the onset of LED-feedback pre-
sentation by the robot and their topographical distribution 
at specific time-points. The grand average difference (black 
line in figure  3(a)) showed the typical N2-P3-complex 
which has been reported consistently in the context of ErrPs 
(Ferrez and Millán 2008a, Chavarriaga et  al 2014, Spüler 
and Niethammer 2015, Iturrate et  al 2015). The negative 
deflection (N2-component, expected around 200–350 ms) 
was mostly pronounced frontocentrally around 300 ms post 
stimulus and the positive deflection (P3-component, expected 
around 250–500 ms) was mostly pronounced frontocentrally 
around 400 ms. The coefficient of determination based on 
channel Cz reached highest values of r2 = 0.09 for 288 ms 
and r2 = 0.11 for 394 ms averaged across all subjects (n  =  13) 
which speaks in favor for a good overall separability of the 
data. Figure  3(b) shows a comparison of the grand average 
difference ERPs over Cz across calibration session (CALIB) 
and co-adaptation runs I, II, IV (CORL)3 with high temporal 
resemblance between the experimental conditions.

The observations from the electrophysiological anal-
ysis were reflected in the single-trial classification perfor-
mances (see figure  3(c) and supplementary table  3). The 
average offline ErrP decoder performance based on cali-
bration data cross-validation was overall 80.2%  ±  7.5% 
(ACC, overall accuracy), with TNR of 81.2%  ±  7.7% 
and TPR of 79.2%  ±  7.5%. ErrP online decoding perfor-
mances were comparably high in accuracy (see figure 3(c) 
and supplementary table  3) with ACC  =  84.2%  ±  7.4% 
for CORL-I, ACC  =  77.1%  ±  12.1% for CORL-II, and 
ACC  =  84.0%  ±  10.6% for CORL-IV. The main difference 
observed in comparison to the offline cross-validation results 
was a higher decoding performance for non-error events 
(TNR: 86.5%  ±  11.7%, 82.5%  ±  18.3%, 90.4%  ±  5.8% 
for CORL-I, II, IV, respectively) and a lower performance 
for error events (TPR: 75.3%  ±  12.0%, 70.4%  ±  15.4%, 
74.4%  ±  17.0% for CORL-I, II, IV, respectively). This 
performance bias was significant across subjects for all 
co-adaptation runs (p = 0.026, p = 0.023, p = 0.002, for 
CORL-I, II, IV, respectively; paired Wilcoxon signed rank 
test, n  =  13). Online decoding accuracies were on average 
lower in CORL-II compared to CORL-I and CORL-IV. 
This was consistent across subjects as decoding accuracies 
differed significantly between CORL-I and CORL-II, and 
between CORL-II and CORL-IV; no statistically signifi-
cant difference was found between CORL-I and CORL-IV 
(pI−II = 0.031, pII−IV = 0.046, pI−IV = 0.600; paired 

2 Analysis and results of policy convergence is reported in section 3.2.

3 Please note that no results are reported for CO-RL-III, since no subject 
keypress responses (validation ground truth) were captured during this part 
of the experiment.
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Wilcoxon signed rank test, n  =  13). Possible explanations 
are discussed in section 4. The theoretical chance-level for 
online ErrP decoding per CORL is 62.0% (inverse cumula-
tive binomial distribution with number of trials nTrials = 50; 
probability of success psuccess = 0.5; confidence threshold 
p = 0.05) which was exceeded in all but three cases: s06/
CORL-IV, s11/CORL-II, s14/CORL-II (see supplementary 
table 3).

Table 2 shows the overview of individual subject results. 
The separability of the ErrPs are expressed in form of the 
maximum coefficient of determination across all channels 
r2
max, separately for CALIB and the CORL data (all trials 

of CORL-I,-II, and -IV). The results show comparably low 
values of r2

max ∼ 0.11 for the three subjects in which offline 
decoding performance did not exceed the chance-level 
threshold (s05, s10, s13), whereas all other subjects show 
higher r2

max values. This indicates that calibration failed in 
these subjects, mainly due to their generally limited separa-
bility of ErrP responses (possible explanations are discussed 
in section 4). As expected, the overall ErrP-decoder offline 
cross-validation accuracies (ACC CALIB) and the online 
average decoding accuracies (ACC  CORL) reflected the 
results obtained from the analysis of the coefficient of deter-
mination, with high separability resulting in higher decoding 
accuracies. Table 2 furthermore reports Pearson’s spatiotem-
poral correlation coefficients between the average difference 
of ERP time courses of all channels (error minus non-error) 
within the period 150–550 ms (period in which the tem-
poral features were extracted). The overall high correlation 
coefficients of average 0.64  ±  0.17 reflect high spatiotem-
poral resemblance and support the notion that the decoded 
ErrPs did not notably differ between CALIB and CORL 
experimental sessions, despite the different experimental 
conditions.

3.2.  ErrP-based co-adaptation

To investigate the extent of co-adaptation between subject 
and robot, we analyzed the development of two behavioral 
measures in conjunction with the development of the policies 
during the co-adaptation runs: (1) Guessing performance—
the development of the accuracy of correct guesses. This 
measure was expected to increase if both subject and robot 
converge to a consensus. (2) Gaze transitions until subject’s 
decision—number of gaze transitions performed by the robot 
until the subject made a decision. This measure was expected 
to decrease as subjects and robot converge to a consensus. 
(3) Policy convergence—the policy change of trial-by-trial 
updates. This measure was expected to decrease if policies 
converge.

3.2.1.  Efficacy: guessing performance.  The subject has three 
objects to choose from and therefore chance-level was p = 1

3. 
At the beginning of each co-adaptation run the robot’s gaze 
policy was initialized with equal probabilities for all actions. 
This guaranteed a random guess in the first trial of all co-adap-
tation runs. Hence, if during the co-adaption runs, the subject’s 
guessing performance exceeded chance-level, the robot’s 
gaze policy must have been updated such that correct guess-
ing was facilitated for the subject; vice-versa, if guessing per-
formance did not increase above chance-level during the run, 
then updates in the robot’s gaze policy did not facilitate the 
subject’s task and/or were misleading. To investigate whether 
the guessing performance depended on the ErrP decoder per-
formance during online operation, we computed Pearson’s 
correlation coefficients between the overall guessing perfor-
mance (percentage of correct guesses within one run) and the 
ErrP decoder accuracy (percentage of correctly classified tri-
als) across all subjects for each co-adaptation run separately. 

Table 2.  Overview of individual results per subject in the order of columns from left to right: maximum coefficient of determination 
r2 across all channels within period 150–550 ms for CALIB and CORL. Cross-validation ErrP-decoder accuracies based on CALIB 
data. Average online ErrP-decoder accuracies during co-adaptation runs CORL-I,-II, and -IV. Within-subject Pearson’s spatiotemporal 
correlation coefficients between average difference ERP time courses of all channels (error minus non-error) of CALIB and CORL (average 
of all trials of I,II,IV) within period 150–550 ms.

r2
max CALIB r2

max  CORL
ACC CALIB 
(offline CV) (%)

ACC  CORL 
(online acc.) (%) corr2 (CALIB,CORL)

s03 0.20 0.31 69.3 86.7 0.67
s04 0.34 0.41 86.3 91.3 0.72
s06 0.36 0.20 82.0 72.7 0.74
s07 0.25 0.31 81.4 82.7 0.58
s08 0.43 0.48 85.7 87.3 0.87
s09 0.46 0.29 92.8 86.7 0.82
s11 0.17 0.09 68.9 65.3 0.29
s12 0.30 0.23 84.7 90.0 0.41
s14 0.39 0.27 88.7 77.3 0.72
s15 0.18 0.31 72.4 85.3 0.70
s16 0.17 0.31 73.3 74.7 0.49
s17 0.36 0.54 81.8 88.0 0.77
s18 0.39 0.24 78.9 74.7 0.53
AVG  ±  SD 0.31  ±  0.10 0.31  ±  0.12 80.5  ±  7.5 81.8  ±  8.0 0.64  ±  0.17
s05 0.12 0.12 50.5 50.7 −0.02
s10 0.10 0.19 64.4 28.7 0.13
s13 0.11 0.13 50.2 67.3 0.12
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Overall guessing performance correlated positively with the 
online decoding accuracies in all three co-adaptation runs 
with r = .71 (p = 0.006) for CORL-I, r = .79 (p = 0.001) 
for CORL-II, and r = .47 (p = 0.1)  for CORL-IV (Pearson’s 
correlation, n = 13). These results indicate that improvements 
in guessing performance depended on the ErrP decoder per-
formance during online operation, e.g. high ErrP decoder per-
formance fostering high guessing performance. As a result, 
those subjects in which the ErrP-decoder calibration perfor-
mance resulted in below chance-level accuracies (s05, s10, 
s13), no notable improvements in guessing performance were 
observed in all co-adaptation runs of those subjects (compare 
supplementary tables 3 and 4). To investigate improvements 
of guessing performance over the course of co-adaptation 
runs, each run was partitioned into five segments of 10 trials 
each. Guessing performance was computed as percentage of 
correct guesses in each segment (the 5% confidence threshold 
is exceeded if  ⩾7 out of 10 trials were correct, one-sided bino-
mial test with chance level p = 1

3). Figure 4(a) shows across 
subject distributions of guessing performance from the start 

(trials: 1–10) until the end (trials: 41–50) of each co-adaptation 
run. The results show a median increase of guessing perfor-
mance from initial chance-level up to 90% in CORL-I, 70% in 
CORL-II, and 80% in CORL-IV. In all three runs, the majority 
of subjects exceeded the threshold of the confidence interval 
(70%) at some point during the run. In CORL-I and CORL-II, 
in the fourth segment, and in CORL-IV already in the second 
segment. Despite the significant differences in ErrP-decoding 
performance (see section  3.1), no significant differences of 
overall guessing performance were observed between CORLs 
(pI−II = 0.528, pII−IV = 0.250, pI−IV = 0.104; paired Wil-
coxon signed rank test, n  =  13). Assuming a co-adaptation 
run to be ‘successful’ when guessing performance  ⩾70% 
in three subsequent segments (probability for exceeding by 
chance: p = 7.6 ∗ 10−6, one-sided binomial test with chance 
level p = 1

3), then successful co-adaptation was achieved in 
10 out of 13 subjects in at least one out of the three runs. 
Two subjects achieved 3/3 successful runs (s09, s12); two 
subjects achieved 2/3 successful runs (s03, s15), six subjects 
achieved 1/3 successful runs (s06, s07, s08, s14, s16, s18). 

Figure 4.  (a) Boxplot representation of guessing performance computed for consecutive segments of 10 trials, across subjects (n  =  13). 
Different panels correspond to different co-adaptation runs. In all three runs, the median guessing performance increased to 70%–90%. 
The black dashed line indicates the threshold of the confidence interval of 70%. The numbers on top of the boxplots represent the ratio 
of subjects which exceeded the threshold of the confidence interval in the corresponding segment. (b) Boxplot representation of gaze 
transitions until subject decision computed within consecutive 10-trial segments, relative to the number of transition counted in the first 
segment (black dashed line). In all three co-adaptation runs, the median number of transitions decreased by 15%–27% with significant 
across subject deviations in some segments (boxes marked with a black asterisk). (c) Boxplot representation of policy change computed 
within consecutive 10-trial segments. In all three co-adaptation runs, the median policy change decreased from ∆π ∼ 0.2 in the first 
segment to ∆π ∼ 0.1 in the last segment, indicating policy convergence relative to increasing guessing performance.
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An exemplary successful co-adaptation run (s09/CORL-I) is 
visualized in figure 5. Individual results are detailed in supple-
mentary table 4 and supplementary figures 1–64.

3.2.2.  Efficiency: gaze transitions until subject decision.  The 
absolute number of gaze transitions turned out to vary widely 
among subjects, even during the calibration session, ranging 
between 10 to 50 transitions (corresponding to a duration of 
robot action execution between ~4–20 s per trial) with aver-
age 13.0  ±  6.3 (CALIB), 15.7  ±  7.0 (CORL-I), 15.0  ±  6.9 
(CORL-II), and 14.8  ±  10.7 (CORL-IV). Therefore, the num-
ber of gaze transitions until subject decision was analyzed 
by partitioning each co-adaptation run into five segments of 
10 trials each (in accordance with the analysis of guessing 
performance) and counting the number of gaze transitions 
within each of these 10-trial segments relative to the number 
of transitions occurring during the first 10-trial segment. The 
results are depicted in figure 4(b): in all three runs, the median 
number of gaze transitions decreased by 15%–27% relative to 
the first segment with across subject significant deviation in 
some segments (p < 0.05, one-sample Wilcoxon signed rank 
test). In CORL-I the number of gaze transitions decreased by 
27.6% (median of percent reduction calculated across sub-
jects); in CORL-II by 19.2% and in CORL-IV by 15.6%. This 
result illustrates that during the co-adaptation runs, subjects 
not only became more precise in guessing, but also on average 

faster in deciding about the robot’s selected object. This sug-
gests that the robot’s gaze behavior adapted in a way that was 
generally easier and quicker understood by participants. The 
absolute number of gaze transitions until subject decision is 
given in supplementary table 5.

3.2.3.  Policy convergence.  To quantify policy convergence, 
the difference between subsequent policy iterations was 
computed for each subject and CORL individually. This 
was carried out by determining the value of the state-action 
pair with the maximum difference between subsequent 
policy iterations, termed as the policy change after trial k: 
∆πk = max(

∣∣πk−1 − πk
∣∣). In accordance with the previous 

analyses of behavioral measures, policy convergence was 
analyzed by partitioning each co-adaptation run into five seg-
ments of 10 trials each and averaging ∆π within each of these 
10-trial segments. The results are depicted in figure 4(c): in 
all three runs, the median of ∆π across subjects decreased 
steadily from the first until the last segment from an initial 
median of ∆π ∼ 0.2 to a final median of ∆π ∼ 0.1. This 
indicates that policies were on average converging relative 
to an increasing guessing performance. The results further 
indicate that not all policies converged within 50 trials as 
the median policy change was still ∆π ∼ 0.1 in the last seg-
ment of all three runs. These findings are further discussed 
in section 4. Policy convergence for an exemplary successful 

Figure 5.  (a) The plots represent a smoothed representation (over 10 trials) of the development of guessing performance (blue line) 
together with the rate change of policy updates ∆π (orange line). The black dashed line represents the threshold of confidence (70%) 
for guessing performance. Single-trial subject guesses, corresponding ErrP-decoder classification decisions and misclassifications are 
illustrated below the plots. (b) Shows the gaze behavior policies after different numbers of iterations (after trial: 10, 20, 30, 40). (c) Shows 
the final policy at the end of the co-adaptation run. The states of the gazing policy are color-coded as follows: shuman (yellow), sObjInt  
(green), sothObjx, sothObjy (grey). State-transitions with high probabilities are represented with thick red lines, low probabilities with thin blue 
lines. This particular example shows convergence towards the ‘fixation’ behavior around trial 30 and ‘nodding’ behavior towards the end of 
the co-adaptation run (see section 3.3). Individual results of all subjects are detailed in supplementary figures 1–64.
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co-adaptation run (s09/CORL-I) is visualized in figure  5. 
Individual results of policy convergence are detailed in sup-
plementary figures 1–64.

3.3.  Emergence of gaze behavior

In addition to assessing the development of co-adaptation, we 
were also interested in the nature of the gaze behavior which 
emerged during the co-adaptation runs. This analysis allowed 
for a qualitative assessment of CORL-III in which subjects 
were not requested to explicitly indicate their guesses via key-
press responses in comparison with the other co-adaptation 
runs. Since participants were not instructed to follow a par
ticular strategy/policy, any gaze behavior was considered 
acceptable and denoted as useful if it helped the subject to 
perform better and faster in guessing the robot’s selected 
object. Figure  6(a) shows an overview of the learned poli-
cies for the 13 subjects and all co-adaptation runs, including 
CORL-III. Successful co-adaption was expected to be 
reflected in policy convergence towards the end of the run. 
Therefore the average of the policies of the last 10 trials (trial: 
41–50) were depicted, with thick red lines representing high 
probabilities and thin blue lines low probabilities. The policies 
which emerged from successful co-adaptation runs are high-
lighted with a blue frame; the guessing performances of the 
corresponding last 10 trials are furthermore depicted next to 
the average policy. By qualitative visual inspection, we iden-
tified two different recurring policies which are furthermore 
termed ‘fixation’ and ‘nodding’ behavior (see figure  6(b)). 
The ‘fixation’ policy led to gaze behavior in which the robot 
tended to fixate the selected object. Example cases are s03/
CORL-I, s07/CORL-II, s15/CORL-I. In the ‘nodding’ policy 
the robot was gazing alternatingly between the subject and the 
selected object in a nodding-type fashion. Examples are s09/
CORL-I, s12/CORL-II, s18/CORL-IV. Also in CORL-III, the 
robot’s gaze behavior converged in a few cases to one of the 
two identified policies, e.g. ‘fixation’ behavior in s08 and s18, 
and ‘nodding’ behavior in s16 (figure 6(a)). These cases indi-
cate that participants explicitly indicating their decision (as 
in CORL-I, -II, -IV) was not required for successful co-adap-
tation, and suggests that the ErrP-based method presented 
here also worked based on covert beliefs/decisions without 
explicit actions linked to the decisions. Convergence to the 
‘fixation’ behavior was expected, since it is very similar to 
the pre-programmed policy used during the calibration task; 
subjects likely could have used it as a proxy. The ‘nodding’ 
behavior was however unexpected, since it had not occurred 
before during the calibration session and subjects could there-
fore not use it as a proxy. Interestingly, the number of cases 
associated with convergence to the ‘nodding’ policy (7) were 
approximately on par with those with convergence to the ‘fix-
ation’ policy (8). The ‘nodding’ behavior may have emerged 
from subjects gradually finding it useful and in result having 
adapted to and positively reinforced it. This observation ret-
rospectively confirms co-adaptation between subject and 
robot, since if subjects were instructed to teach the robot a 
specific behavior, previously unexpected behavior is unlikely 
to emerge.

4.  Discussion

ErrPs, decoded from human subjects’ brain activity in real-
time during HRI, might be useful in the future to adapt the 
behavior of artificial agents, such as robots, to better align 
with human expectations, needs and conventions. We under-
stand our study as a logical extension of previous works 
(Iturrate et  al 2015, Salazar-Gomez et  al 2017, Kim et  al 
2017) which demonstrated the potential of using ErrPs as 
a teaching signal for robot skill learning. In contrast, our 
experimental paradigm featured a scenario in which there 
was no explicit ‘optimal’ or ‘correct’ behavior the robot was 
required to adapt to, but where mutual adaptation between 
human and robot was permitted; the ‘optimal’ robot policy 
had to be negotiated between both parties in a co-adaptive 
fashion. This introduced a considerable level of uncertainty 
and complexity into the experimental setup as subjects could 
not follow a specific task or proxy. With this relaxation of con-
straints in the experimental setup, we aimed at validating the 
usability of ErrPs as an implicit feedback signal to improve 
HRI where adaptation is possible from both interaction part-
ners. Despite the uncertainty and complexity introduced, we 
observed significant improvements in interaction performance 
across participants over the course of individual co-adaptation 
runs, as indicated by behavioral measures of efficacy and effi-
ciency: The average percentage of correct guesses (efficacy) 
increased from the initial chance-level (~33%) to 70%–90% 
within 10–40 trials (corresponding to 1–4 min), median across 
subjects. Additionaly, the number of gaze transitions made by 
the robot before the participant indicating his/her guess (effi-
ciency), relative to the corresponding number in the beginning 
of the co-adaptation run, decreased on average by 15%–27%. 
Hence, adaption of robot’s policy, based on the ErrPs col-
lected from the human interaction partner, was accompanied 
by a higher performant and more efficient interaction.

Online single-trial ErrP decoding performance was on 
average 81.8%  ±  8.0% across 13 subjects which is compa-
rable to previously reported ErrP classification performances 
used for closed-loop adaptation of robotic systems: Iturrate 
et al (2015) obtained online decoding accuracies around 74% 
across 12 subjects using temporal features combined with 
LDA classification. Salazar-Gomez et  al (2017) obtained 
online decoding accuracies around 65% across four subjects 
using correlation-based features and covariance features 
based on spatially filtered EEG signals using xDAWN (Rivet 
et al 2009). Based on post-hoc offline analyses, they reported 
however about the presence of a secondary ErrP for which 
they estimated a theoretical online decoding performance 
around 80%. The most recent work by Kim et  al (2017) 
reported high online decoding performances of balanced 
accuracy around 90% across seven subjects using temporal 
features after xDAWN spatial filtering and classification using 
linear support vector machines (SVM). They explain their 
high performance being mainly a result of their data augmen-
tation approach based on decoding ErrPs in two separate time 
windows (instead of just one). A limitation observed from the 
online single-trial classification results of the present study 
(section 3.1) is a consistent and significant across subjects 
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bias towards the non-error class. This classification bias has 
been reported consistently in the context of ErrP decoding 
and related to the typical design of calibration protocols with 
unbalanced number of samples per class (Chavarriaga et  al 
2014). As class-balancing was performed in the present study, 
the systematic bias was likely related to the limited number 
of 150 samples used for ErrP-decoder calibration. Although 
the use of a regularized LDA may have partially counteracted 
this (Schäfer and Strimmer 2005), the use of a priori informa-
tion from other subjects (Iturrate et al 2011) or upsampling 
the minority class, instead of downsampling the majority class 
may have helped improving online decoding and are recom-
mended modifications for future works. ErrP decoder calibra-
tion resulted in chance-level performance in three subjects 
(s05, s10, s13). The results reported in table 2 are informative 
in that they show low r2

max values compared to the remaining 
subjects, indicating generally limited separability of their 
ErrP responses. A post-hoc visual inspection of the raw EEG 
data showed comparably strong artifact contamination in s10 
(mainly noisy channels) and in s13 (mainly slow DC drifts); 
the data of s05 on the other hand was largely unaffected by 
artifacts. This suggests that the low calibration performance 

was mainly due to the technical setup and could have been 
resolved by repeating the experiment on a different day or by 
adding automatic artifact rejection to the modeling procedure. 
Why calibration failed in s05 is currently unexplained; one 
possibility could be that this subject had been insufficiently 
concentrated on or engaged in the task. Across subjects, 
ErrP online decoding performance was significantly lower in 
CORL-II than in CORL-I and CORL-IV. Notably, this sys-
tematic performance drop was temporary and fully recovered 
toward the end of the experiment in CORL-IV. Therefore it 
is hypothesized that the observed performance drop is barely 
related to technical reasons, but rather to the subject’s concen-
tration/task engagement level. CORL-II was a direct repeti-
tion of CORL-I, which might have had a negative effect on 
the subject’s motivation and engagement. On the other hand, 
CORL-IV followed CORL-III; the intermediate variation of 
the experimental protocol with CORL-III might have had a 
positive effect on the subject’s engagement during CORL-IV. 
Despite noticeable differences in the median guessing per-
formance (figure 4(a)), the systematic drop in ErrP online 
decoding performance had no significant effect on the overall 
guessing performance in CORL-II.

Figure 6.  (a) Overview of gaze policies averaged across the last 10 trials for 13 subjects and all co-adaptation runs. Successful co-
adaptation runs are highlighted with blue frames. The guessing performance during the corresponding last 10 trials is depicted next to the 
policies. (b) Identified recurring policies: ‘fixation’ behavior in which the robot tended to fixate the selected object (examples: s03/CORL-I, 
s15/CORL-I, s08/CORL-III, s18/CORL-III); ‘nodding’ behavior in which the robot alternatingly gazed at the subject and the selected 
object in a nodding-type fashion (examples: s09/CORL-II, s16/CORL-III, s18/CORL-IV).
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The ErrP-decoder performance played an integral role in 
successful co-adaptation, as indicated by positive correlations 
between overall guessing performance and ErrP decoder per-
formance during online operation. Furthermore, on average, 
policies converged in relation to increasing guessing perfor-
mance (see figures  4(a) and (c)) as indicated by a median 
decrease of the policy rate change over the course of co-
adaptation runs. This supports the functionality of the policy 
adaptation approach here adopted. We observed, however, a 
number of cases with failed co-adaptation despite high ErrP 
decoder performance (ACC  >  75%). These cases might be 
due to unknown human-related factors, e.g. variations in 
engagement in the task, attention variations, or variations in 
interpretation of the experiment. From a technical perspec-
tive, the policy adaptation approach used may have influenced 
the stability of co-adaptation as well. In some of these failed-
cases there were temporary increases in guessing performance 
followed by decreases (unlearning), indicating temporary, but 
unstable learning (exemplary cases are s14/CORL-IV, s17/
CORL-II, see supplementary figures 36 and 46). The learning 
approach here adopted does not enforce convergence to a 
global optimum. This has the advantage that while converging 
to one policy, bifurcations to other policies remain possible. 
This flexibility might be particularly important in the con-
text of co-adaptation as changes of the human strategy are 
likely and imaginable in the sense that a policy which was 
previously optimal to the subject is neglected and replaced 
by a different optimal policy. Exemplary cases supposedly 
showing such policy re-adaptations are s08/CORL-IV, s09/
CORL-II, and s14/CORL-I (supplementary figures  20, 22, 
and 33). These cases show initial convergence interrupted 
by periods of increased policy changes and subsequent sec-
ondary convergence. On the other hand, this flexibility, in 
combination with a learning rate parametrized to promote 
quick learning, may have encouraged instabilities or quick 
unlearning, as the outcome of single trials interfered with the 
learning process (e.g. sensibility to ErrP-decoder misclassifi-
cations). One possible way of stabilizing the policy adaptions 
would be to use an adaptive learning rate based on the past 
rewards (ErrP-decoder decisions), e.g. decreasing the learning 
rate in case of increasing number of past non-error events. 
However, whether, and to what extent a systematic control 
of the learning process is recommendable in the context of 
ErrP-based human-agent co-adaptation remains an open ques-
tion for future investigations. In our experiment the learning 
process was limited to 50 iterations (trials), which turned out 
insufficient for drawing definite conclusions about the co-
adaptation process in the long run. Therefore, an entry point 
for follow-up studies is most importantly the investigation 
of the dynamic effects of co-adaptation for longer periods or 
during continuing interaction.

The analysis of emergence of gaze policies revealed that in 
most successful co-adaptation runs the robot’s gaze behavior 
converged to either one of two different policies: ‘fixation’ 
and ‘nodding’ behavior. While the ‘fixation’ behavior was 
expected as it closely resembles the gaze behavior during the 
calibration session, the ‘nodding’ behavior, in contrast, was 
not expected. Although both behaviors are noticeably different 

and may be interpreted as conveying different meanings, an 
alternative interpretation is that both are consistent in that 
the target object is attended to more often than others. In that 
sense, it is likely that the type of behavior to which the system 
converged to depended on whether the alternating transitions 
between shuman and sobjInt or the transition sobjInt→objInt were 
sampled more often in an early stage of the co-adaptation run. 
Either way of interpreting the emergence of the two types of 
behaviors supports the hypothesis of co-adaptation, since for 
the subjects both strategies seemed valid despite having had 
no explicit exposure to the ‘nodding’ behavior before the start 
of the co-adaptation runs. On that note, one may argue about 
why just two different behaviors emerged from the interac-
tion, given that the manifold of imaginable and possibly valid 
strategies is much bigger (e.g. a slightly more complicated 
gaze pattern or a consistent logical swap of the target object 
with one of the other objects). This observation may be related 
to constraints in human information processing and learning 
of more complex statistical patterns but remains an open ques-
tion for future investigations. Further exploration of how robot 
behavioral policies, as in this case the robot’s gazing policy, 
develop during such interaction will provide useful insights 
for improving the technical implementation of ErrP-based 
mediation of human-robot co-adaptation and may likewise 
provide insights about human information processing and 
learning.

Our experiment featured a rather synthetic and highly 
structured HRI scenario. This was necessary for an initial 
proof of concept of our approach. Most simplifications and 
procedural constraints were introduced to ensure reliable 
decoding of ErrPs from EEG signals as well as for the pur-
pose of clean validation: For instance, our experiment was 
designed in a way as if no explicit human feedback (key-press 
response) was available, to allow quantitative validation of 
ErrP-decoder performance as well as improvements in inter-
action performance indicative of co-adaptation. In this regard, 
the additional human feedback in form of key-press responses 
served only as a ground truth measure for post-hoc validation. 
Comparison of learned gaze policies between CORL-III (no 
explicit feedback) and the other conditions CORL-I,-II,-IV 
(with explicit feedback) suggested however that the explicit 
human feedback was not a pre-requisite for successful co-
adaptation. However, despite the few examples of successful 
co-adaptation in CORL-III, no definite conclusions can be 
drawn from this part of the study. Notably, the results reported 
in supplementary table 5 suggest that 15 gaze transition may 
have not been enough for all subjects to build up an estimate 
about the target object with a level of confidence high enough 
to elicit observable (and decodeable) ErrPs. The design 
choice of 15 gaze transitions may have hampered the out-
come of CORL-III; a follow-up study with a design focused 
on the rationale and motivation of CORL-III is required to 
consolidate the preliminary findings of this part of the study. 
Furthermore, we used a perceptually simple symbolic feed-
back in form of a flashing LED for communicating the robot’s 
selected object to the subject. This was necessary as earlier 
works demonstrated limited ErrP decodeability in response 
to perceptually more complex or gradually unfolding stimuli 
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(Omedes et  al 2015, Ehrlich and Cheng 2016, Welke et  al 
2017, Dias et  al 2018). Subject-dependent individual ErrP-
decoders had to be calibrated. This is a typical procedure in 
the field of EEG-based BCI research (Wolpaw et al 2002) and 
necessary because of typically high inter-subject variations 
of EEG signals and responses (Lotte and Guan 2010). Even 
though ErrPs have been found to largely resemble in terms 
of spatiotemporal activity patterns, earlier works have high-
lighted task-dependent ErrP signal variations that can nega-
tively affect decoding performance when applying decoders 
across task (Iturrate et  al 2013). Therefore, we employed a 
calibration protocol which contextually resembled the co-
adaptation runs. Although ErrPs have been widely recog-
nized as a useful response to harvest from human subjects for 
improving human-machine interaction, the design constraints 
and simplifications introduced in the present study illus-
trate the current challenge of the method’s straightforward 
applicability. Research efforts on different ends, such as on 
improving decoding performance (Omedes et al 2015, Kim 
et al 2017), on practicality of the EEG setups (Ehrlich et al 
2017) and decoder calibration (Iturrate et al 2011, Kim and 
Kirchner 2016), and on the observability of ErrPs in response 
to different stimuli and varying scenarios (Ehrlich and Cheng 
2016, Welke et  al 2017, Behncke et  al 2018, Omedes et  al 
2018) are required to push ErrP-decoding towards more wide-
spread applicability.

5.  Conclusion

In this paper, we experimentally demonstrated the usability 
of EEG-based ErrPs as a feedback signal for mediating co-
adaptation in HRI. Our study featured a simplified HRI sce-
nario in which successful interaction depended on co-adaptive 
convergence to a consensus between subject and robot. ErrPs 
were decoded online from subjects’ ongoing EEG signals with 
an avg. accuracy of 81.8  ±  8.0% and utilized for adaptations 
of the robot behavior, while the subject adapted to the robot by 
reflecting upon its behavior. Adaptation of the robot behavior 
was realized with an episode update strategy using ErrPs as a 
delayed reward feedback signal for the past sequence of robot 
actions. Successful co-adaptation was demonstrated by sig-
nificant improvements in interaction efficacy and efficiency 
across subjects and by the robot behavioral policies that 
emerged during the interaction.
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