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Abstract— Patients who lost their ability to move and talk
are often socially deprived. To assist them, we present a
prototype of a telepresence humanoid robotic system that aims
to extend the social sphere and autonomy of the patients via
an EEG based brain-computer interface. The system enables
a multi-modal and bidirectional communication. It empowers
the patient to interact with the robot and command it using
a high level P300 BCI that interprets the patient’s answers
to questions asked by the robot. Additionally, the system
allows interaction with other people. By forwarding some of
the robot’s sensations to the patient, the patient’s senses and
action space are extended and a telepresence of the patient is
created. A use-case validation of the system shows success in
achieving bidirectional communication between an able-bodied
test subject and the robotic system as well as in interactions
with other people.

I. INTRODUCTION

Patients with severe motor disabilities, such as the ones
caused by stroke or amyotrophic lateral sclerosis have
often lost their ability to both communicate and move
independently. These patients require a high amount of
attendance but it is often not possible to give them all
the care they deserve. According to the Bureau of Labor
Statistics of the United states, the country will need an
estimate of 1.09 million nurses by 2024 [26]. The situation
worldwide is similar [22] making it necessary to think about
how to best assist patients demanding a high amount of time.

A. Human-robot interaction

People in social deprivation, such as the patients we
attempt to assist, have a lower life expectancy than
those with a wider social sphere [5] and have a bigger
risk of cognitive decline in old age [33]. Robots that
produce positive emotions in humans and engage in social
interaction have been shown to be beneficial for people in
social deprivation [33]. Not only are these systems helpful
to perform tasks that improve the quality of the life of the
patients, such as supporting them to take their medicines or
cleaning, but also can help them to enhance their physical
and mental health [4].
Therefore, we propose the use of a humanoid robot capable
of producing positive emotions in humans, as a strategy to
help these patients in social deprivation and keeping them
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healthy through a system that engages social interaction.
Previous works on telepresence interfaces has shown a
positive impact by reducing workload in health care [19]
and helping the caretakers to check the health of the patients
in real time. These telepresence systems can also be useful
for patients with reduced mobility to explore the world [27]
and thereby regaining some autonomy.

B. BCI Systems suitable for care-taking service robots

In cases of severe motor disabilities patients cannot vocally
communicate. Therefore, we propose to use a brain-computer
interface (BCI) as a communication channel. BCIs have been
shown to greatly help patients with spinal chord injury by
controlling robotic arms [16], [30] or other external devices.
With motor imagery BCIs, a reliable cursor movement on a
screen has been achieved. This cursor movement induced
by motor imagery can be used for typing on a virtual
keyboard [23] with on average 28 characters per minute or
even for using a commercially available tablet computer [21]
in order to communicate with the outside world. Electro-
encephalography (EEG) offers a non-invasive way to record
cortical signals and a paradigm based on the P300 response
is frequently used to enable communication though virtual
typing on a computer screen. Recent studies with healthy
patients achieved communication rates of up to 12 characters
per minutes [29].
As McFarland and Wolpaw expressed in [17], ”BCIs [can be
used] for communication and control” . However, not many
BCIs have tried to combine communication and control.
We therefore propose a BCI through which the patient can
communicate with a robot through high level commands
in order to control it. Kuhner et al. [14], for example,
developed a motor imagery based high level goal selection
BCI in combination with a service robot. The user interaction
happened through a computer screen and the commands were
sent to a static industrial KUKA robotic arm. Although their
user interface used very simple high level commands, the
communication with the robot was far from a human-like
conversation.

C. Proposed system

To assist these patients and enhance their quality of life,
we developed a prototype of a humanoid robotic system
with which they can communicate via a non-invasive BCI



Fig. 1. System overview: P300 BCI lets user select answers on a
screen by focusing on them (left). These selection are transmitted to a
humanoid robotic system. The robot is capable of (clockwise on the right)
face recognition, talking, hearing and natural language processing, walking,
navigation, arm and head movement. Thereby the robot is able to verbally
communicate with both the patient and other people. By forwarding some
of its senses to the patient, the robot creates a telepresence of the patient.

and which can execute simple tasks for them. We use a
humanoid robot able to engage in verbal and nonverbal
communication with the patient to make interaction more
natural as compared to just a computer screen. Besides
communicating directly with the patient, the robotic system
is able to interact with the outside world including other
people. In the meantime, the robot’s senses, for example
the camera view, is shared with the patient in order to
extend the patient’s senses. This engages interaction between
patient and other people by using the robotic platform as an
extension of the patient’s body to create a telepresence of the
patient. The novelty of this system lies in the combination of
communication via a high level BCI and a humanoid robotic
system which can act both as a telepresence and as somebody
to communicate with.

II. METHODS

A. Communication channels

The communication scenario consists of interactions be-
tween three main actors: the patient, the robotic system and
people around the patient. Figure 1 shows an interaction
diagram of the system including all robot functionalities that
allow the robot to accomplish an effective communication
with the patient, environment and people around the patient.

The robot-patient communication is performed through
four communication channels, the first one is the commu-
nication between the robot and the BCI. Through this chan-
nel, the BCI transmits the patient’s answers to the robot’s
verbal questions and the robot transmits back confirmation
upon execution. The second communication channel is the
auditory channel through which the robot asks questions and
gives feedback that informs the patient directly about the
command understood by the robot and the execution of the
next action. The third communication channel is the shared
senses channel, namely the video streaming feature, that
allows the patient to explore the environment through the
robot’s eyes. Finally, the fourth communication channel is
the non-verbal communication channel. This channel intends

to engage a pleasant communication with the patient by
imitating human non-verbal communication.
The communication between the robotic platform and the
people around the patient is verbal. The robot verbally
conveys the patient’s needs and waits for a reply that it can
understand through its natural language processing module.
In order to identify the person requested by the patient, the
robot has a face recognition module.

B. Interaction design

Multiple different interactions between patient and robot
are possible (see figure 2). Besides engaging in direct
communication, the robot can bring other people to the
patient, can tell jokes and take the patient on a virtual walk
by streaming the ego view to the patient’s camera. After
finalisation of a task, the robot asks the patient when it should
get back to them in order to provide a means of control when
to start talking again1.

Fig. 2. Patient-robot interaction currently implemented in the prototype.
Blue bubbles symbolise BCI interfaces with fixed set of answers. Text on
arrows signify possible answers.

C. Brain computer interface

1) Experimental paradigm: In order to decode the pa-
tient’s answers to the robot’s questions, a P300 BCI was
implemented using OpenViBE [25] and Python. The classi-
fication of P300 responses to letters flashing up on a screen
has previously been used to enable communication through
a noninvasive BCI [9]. Standard P300 spellers consist of a
6x6 grid of characters, where rows and columns sequentially,
but randomly, flash up. The patient has to focus on one
particular character in order to select it. If the target letter is
flashed up, a positive deflection in EEG activity after around
300 ms (P300) can be observed mostly over the parietal
cortex [20]. A binary classifier can be trained to discriminate
between target signal and non-target signal. In order to allow
the selection of higher level answers like ”I am feeling
good.” instead of just single characters, a new interface was
designed. It contains a 3x3 grid, where each of the 9 boxes
contains a word or short sentence (see bottom left of figure
1). The visual stimulation consists of an alternation of one

1An example of such an interaction is shown in a video: tiny.cc/
telepresence_bci_robot2
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row or column flashing (0.2s) and no flashing (0.3s). After
every row and column has flashed up once, the stimulation is
repeated for up to twelve times to constitute a trial. Between
repetitions, a 1.0s waiting time and between trials a 3.0s
waiting time is introduced to make sure that responses are
not overlapping. For offline recording, sessions with ten trials
and twelve repetitions each have been recorded, which leads
to 720 stimulations per session for a 3x3 matrix.

2) Signal acquisition: The EEG signal was acquired at
128 Hz using a 14 channel Emotive Epoc+ headset [11] (see
rop left of figure(see left of figure ??)). The Emotive headset
has the advantage of being a contextual EEG device, which
means that its appearance is less disturbing than standard
medical EEG systems. More importantly, it is easy to set-up
and as such suitable for home applications. This comes at
the price of less channels and slightly lower decodability of
P300 responses [8].

3) Signal processing and feature selection: The signal
was bandpassed between 1 and 20 Hz with a 4th order
Butterworth filter. After selecting the six channels closest to
the parietal region and epoching from 0 to 600ms after stimu-
lation, the signal was averaged across 6 repetitions (similar to
OpenViBE example P300 paradigm [1]). This decreases the
number of repetitions available for classification, but strongly
increases the signal to noise ratio based on the assumption
of uncorrelated noise [28]. It therefore improved the clas-
sification of individual binary classifications measured as
cross-validations score by 0.1. Features were calculated by
decimating the signal by a factor of 8. This creates features
that are more invariant to slight time shifts. Having 120
trials for classifier training (720/6 because of averaging),
this is quite a high number of features and is prone to over-
fitting [31]. However, reducing the number of features, e.g.
by Fisher ranking or PCA, did not show improvements in
cross validation (cv) scores. Therefore, the simpler approach,
i.e. without additional dimensionality reduction, was chosen.
Figure 3 shows an example of the signals observed.

Fig. 3. Signal average and standard deviation for target (green) and no-
target (red) response within first 600ms after stimulation for session with
best classification performance. N=40 target and N=80 no-target.

4) Offline classification: Krusienski et al. compared dif-
ferent classifiers for P300 and found that linear discriminant
analysis (LDA) classifiers yielded the best performance [13].
Therefore, an LDA classifier was chosen as well. Adding
shrinkage is frequently implemented reduce over-fitting and
yielded an improvement in cv score of 0.08. Support vector
machines (SVM) often perform well with little training trials,
because only a few support vectors are required to define the
decision surface. Therefore, they were tested as well, both

with radial basis functions (RBF) and linear kernel, but did
not show any improvement. LDA with shrinkage was chosen,
because it yielded the highest performance in 10-fold cross-
validation across multiple sessions.

5) Online classification: Before every online experiment,
an offline calibration has to be performed for around nine
minutes in order to train the classifier. Doing so right
before an online experiment accounts for the influence of
slightly different electrode positions. This classifier was
used to predict target/no-target labels in online trials for
features calculated in the same way as offline. Instead of
the maximum likely class label, the classifier was used to
return the probability of a certain row or column being
the target. Applied on all rows and columns flashing up in
an online trial, this yields target probabilities for each row
and column being flashed up. In order to get from multiple
classifications to one decision about the target focused on,
Bayesian updating was performed. Consider a classification
of flashing in a single row which returns a target probability
of 0.7 and no-target probability of 0.3. This means, that both
other rows together have a probability of 0.3 of being the
target. Following this approach the probability distribution
across row/column has been calculated for every row/column
flashing up, i.e. 3 times per direction. These distributions
are multiplied with each other and a uniform prior and
are normalised to yield a valid posterior probability density
function P (i|D):

P (i|D) =
P (D1|i) ∗ P (D2|i) ∗ P (D3|i) ∗ P (i)

P (D)
, (1)

where i is the row/column index, P (Dx|i) stands for the
likelihood of data Dx obtained from stimulating row/column
x and P (i) is the prior. If the posterior probability of a
single row/column exceeds a threshold of 0.9, the result
was accepted. Otherwise, another trial was initialised to
accumulate additional evidence.

6) Online communication system: The BCI system waits
for a command from the robot to initialise an online trial.
Upon receipt of the message, the recording and visual
stimulation is started. Upon finishing the recording of that
trial, the data is passed on to the classifier and once the
probabilities of a single row and column each exceed 0.9, the
result is returned to the robot. If this is not the case, the trial is
repeated. The recording of one trial with six repetitions takes
30s with the computational time being negligible. Therefore,
the time to select an answer takes at least 30s, but multiples
of it, if the certainty was too low.

III. ROBOTIC PLATFORM

In this use-case validation of a service robot for patients
unable to talk and move, we use the robotic platform Nao.
This robotic platform developed by Aldebaran robotics
is a versatile humanoid robot commercially available at
considerable low price, which makes it suitable for usage
both in hospitals and at home. This robot easily evokes
positive emotions in humans. Evoking positive emotions in
humans is an important aspect for robots performing social



tasks because they make the human-robot interaction easier
by helping the users develop interest in learning to use the
system [27].
The robot acts as an extension of the patient’s body to
interact with the world. The modules that integrate the
robot architecture transmit the robot’s senses to the patient
to give the highest possible amount of feedback. To design
the robots’ interaction with other people in the most natural
way, its movements need to be fluent and engage interaction
[32]. Additionally, it is necessary to recognise different
people as well as their reactions. To do so, a face recognition
module and a natural language processing module were
implemented. These modules help the robot not only to
better give feedback to the patient but also to interact in a
natural way with other people.

1) Robot-public communication: The talk, face recogni-
tion and natural language processing modules offer an in-
terface between other people and the patient. These modules
allow the patient to interact with other people by telling their
needs to an specific person. Afterwards they identify a reply
from this person and record the person’s answer and thereby
emulate a direct conversation.
The first step in order to recognise a face is to detect the face
position. Therefore, the face recognition module implements
a haar-cascade classifier. This returns the position of the faces
in the robot camera image to the face recognition module in
order to identify the target person.
The face recognition was implemented using the eigenfaces
and a multiclass support vector machine that returns a
classification score to recognise the face of the person in the
image. The natural language processing node was developed
using the NAOqi speech recognition tool.

2) Movement design: Engaging attention by looking di-
rectly to the face is a core skill for non-verbal communication
and a crucial aspect for joint attention communication [15]
as an example of non-verbal communication [18]. By adding
movements and expressions, it is possible to perform clearer
and more effective communication between humans [12].
Thus, movements were integrated into the robot execution
in order to engage communication with the patient and with
other people.
An average human changes their posture around four times
per minute within a conversation with a movement velocity
of around hundred degrees per second [10]. Based on that,
a natural head movement was implemented. In the same
way, greeting movements and movements to look directly
at people’s faces were implemented in order to improve
engagement into conversations.

3) Sharing senses: One of the central goals of this
telepresence BCI guided service robot is to offer a body
extension to the patient. To accomplish this goal, the robot
shares visual and auditory cues with the patient. The robot
is able to share its camera images with the patient through
a video streaming service. The video streaming service can
be turned on or off according to the actions the patient
selected. For instance, it will be turned on when the patient

wants to go for a walk and turned off when the patient
wants to be alone.
The implemented feature of directly recording a message
for the patient is another way to share senses with
the patient. Through this functionality, the patient can
listen to a recorded voice message. As a consequence
the patient could feel more socially involved because it
seems as if the second person would be close at the moment.

IV. RESULTS

A. BCI evaluation

All tests were performed with a single healthy subject
in sessions spanning multiple days. Informed oral consent
was collected prior to every experiment. In three different
sessions, the shrinkage LDA classifier yielded an accuracy
of 93.3 + −3.4% (10 fold cross-validated) on individual
target/no target classifications.

1) Offline calibration:
a) Boxes with text or digits: : Previous P300 spellers

used boxes with characters instead of boxes with whole
words or even short sentences. In order to exclude the possi-
bility that adding information reduces classification accuracy,
a test with a screen with digits from 1 to 9 was conducted.
However, this resulted in a reduction of cv score (-0.13) and
therefore, it was excluded that it limits performance and the
multiple word high-level commands were kept to provide a
conversation-like interaction.

2) Online classification: The BCI system was tested
online in combination with the robot system. In order to
ensure high comparability and to speed up the evaluation,
the online classification accuracy was quantified in a pseudo-
online fashion in experiments involving only the BCI system.
Two offline sessions were recorded directly after each other.
Then, the second session was split into individual trials where
each trial was classified by a classifier trained on the first
session in the same way it would have been classified in an
online session. In two separate sessions, the classifier trained
on the first session was able to predict 7 and 9 out of 10 trials
of the second session.

B. System evaluation

1) Communication rate: The BCI system takes at mini-
mum 30s to return an answer to the robot’s question, mul-
tiples of it, if the accuracy is low. Depending on the length
of the answer (shortest answer is ”no”, longest possible
currently is ”Bring someone here” with 16 characters), the
rate of characters per minute varies between 4 and 32.
However, this is not the best measure of accuracy for a
P300 BCI with high level selections. The time per selection
could be reduced by decreasing the time between flashes
or reducing the averaging factor, but this would reduce
classification accuracy.

C. Example interaction

In order to show the performance of our BCI guided
service robot we share a link to a demo video showing one



of the use cases performed by our implemented system 2.
In this demo video we show how a patient wants to tell a
specific person to come and visit him. To do so, the robot
starts a conversation with the patient to inquire his needs.
Once it is aware of the patient’s needs, it navigates through
the room in order to find the the target person. While doing
so, the robot streams its camera video to the patient to share
its observations. Upon arrival to the position where the target
person should be, it searches for the person and recognises
their face in order to tell them to come and visit the patient.
In the conversation with the target person, the robot waits for
the person’s answer. In case the person cannot come to visit
the patient, the robot will ask for a voice message in order
to inform the patient about the reason why the requested
person is prevented. Otherwise, the robot will ask the person
to walk along with it to visit the patient.

V. DISCUSSION

A. BCI performance

a) Classification accuracy: : A reliable BCI system
is more likely to be adopted by users [6]. Therefore, it is
crucial to optimise classification performance and section
IV-A showed how it was done for this system. Duvinage et
al. used a similar OpenViBE paradigm and classifier with a
2x2 P300 speller matrix in order to compare the Emotive
headset’s performance with a medical EEG device. Their
offline classification accuracy for Emotive was around 80%
using averaging across two repetitions [8]. We yield offline
accuracies of over 90% in the final system layout. This is
most likely due to using 6x averaging and optimising the
electrode location. The paper of Krusienski et al. compared
different classifiers for P300 and also showed a strong depen-
dence of classification accuracy on the number of repetitions.
Classifying a second session with a classifier trained on the
first session, they reached accuracies of up to 95% when
averaging 15 times, but below 80% when averaging five
times (N subjects = 8) [13]. Our pseudo-online results with
six fold averaging of 7/10 and 9/10 are in the range of what
is to be expected based on Krusienski et al..

b) Interface layout: : Most previous P300 BCIs relied
on speller matrices, where one character at a time can be
selected. P300 BCIs purely based on higher level commands
are rare to find in the literature. We decided for a 3x3 matrix
with higher level commands, because most basic interactions
follow structured patterns and therefore replies or decisions
can be made with a single BCI selection, which requires less
ongoing concentration by the patient. A schema previously
adopted are word suggestions similar to an auto-complete
function while typing on a phone. In 2014, Akram et al. were
able to double the amount of characters per minute from 2 to
4 with a word suggestion scheme [2]. Recently, participants
in a study by Speier at al. were able to spell on average
12.7 characters per minute (N subjects = 12) [29]. This was
an improvement by around 15% compared to not using a
probabilistic language model. Their character selection is

2tiny.cc/telepresence_bci_robot2

much faster than in our system (max 2/minute), but one
selection in our system can contain even a short sentence.
Our approach is very modular, leaving the possibility to add
any number of interfaces with 9 options, therefore allowing
extension to any structured conversation. One could also
include the option to select a P300 speller in case none
of the options presented are of interest. Interestingly, our
system performance was higher for an interface with words
than for the same interface, but with numbers (0.92 vs. 0.79
cv accuracy). While this is not statistically significant due
to the low sample size, it is an effect that should be further
investigated.

B. Switching on

An important point of discussion for every BCI is the
problem of switching on the system. In most BCI systems,
the user does not have control over switching it on, but
instead it has to be switched on externally. The current
system is switched on by the robot initialising the interaction.
The user does not have active control to switch the system
on. However, upon finishing the interaction, the patient has
the option to specify when they want the robot to get back
to them to re-start interaction. Therefore, the patient has pre-
dictive control on when to initialise interaction. Pfurtscheller
at al. propose to use hybrid BCIs as a possible solution by
adding a second modality as a ”brain switch”. They suggest
using for example heart rate or a steady state visual evoked
potential paradigm to switch on the system [24]. In this
scenario the Emotive headset limits the number of methods
used as brain switch but a feasible option would be a single
steady-state visual evoked potential (SSVEP) based switch.
It is easy to classify with a low false positive rate because
it is spatially distinct.

C. Engaging interaction

Non-verbal communication plays an important role in
coordinating teammates in collaborative tasks. The same
non-verbal communication strategies applied in human to
human collaborative tasks can be applied in human-robot
collaborative tasks to improve the performance of robot
systems [7]. In this BCI guided service robot implementation,
the robotic platform needs to cooperate with people around
the patient to help the patient in their needs and with the
patient to get to know their needs.
In order to achieve that, different non-verbal communication
gestures were implemented in the the execution of the
robot’s actions. Before every interaction to a human, the
robot will perform a greeting routine in order to engage a
conversation, after that the robot will look directly at the
human face and tell its message. Whether the answer to
the robot message comes from the patient through the BCI
system or verbally in the case of a person around, the robot
will wait attentively for a human response in order to perform
the next action. The robotic platform will always look direct
at the person it is interacting with in order to motivate clear
communication with the subject and give verbal feedback of
the next action to be done. This intends to inform the patient

tiny.cc/telepresence_bci_robot2


or the people around about the robot’s current status and the
next commands to be executed.

D. Patients’ needs
In order to develop BCIs that enhance the quality of life

for the patients, it is of major importance to research on
the needs of the communities that the BCIs are developed
for. While there is not much literature on the the needs
of locked in and stroke patients, multiple studies analyse
the needs of spinal cord injured patients [6], [3]. Blabe
et al. [6] systematically analysed responses of around 150
patients with spinal cord injury in the cervical region. They
found that the greatest improvement of the quality of life
would be rehabilitation of hand function. 60-70% responded
that they would be interested in fast typing, showing that
there is strong interest in communication even though these
patients still possess the ability to talk. 35-60% of their
patients would use a system where they control a robot
with a camera, which has similarity to parts of this system.
Interestingly, this percentage was increasing, the more severe
the injury (SCI on higher level) was. Our system combines
multiple of the features that have been surveyed to be of
interest to patients, i.e. communication and extension of the
patient’s senses through streaming senses from the robot to
the patient. This suggests that patients would have interest
in such a system. Our system provides a platform which
can be extended in multiple different ways. We validated a
simple prototype with constrained interactions in a healthy
individual. Useful extensions or improvements of the system
will require involvement of patients to optimally address their
needs.

VI. CONCLUSIONS

We presented a use-case of a P300 based BCI system for a
patient to communicate with and through a humanoid service
robot. Both offline and online classification accuracies of the
BCI are in the range of previously published methods. The
robotic platform offers the possibility to share senses and
thereby becomes a body extension tool and a telepresence
of the patient. Furthermore it enables the patient to interact
indirectly with other people using person recognition tools
and fluid verbal and non-verbal communication. The novelty
of this system lies in the combination of communication via
a high level BCI and a humanoid robotic system which can
act both as a telepresence and as somebody to communicate
with. The system is designed in a modular way such that
extensions to other predefined communication structures are
possible and giving the robot additional abilities can be
integrated within the current system.
The code for this project is available at https:
//github.com/germandival/BCI_guided_
service_robot
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