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Abstract
Validating human–robot interaction can be a challenging task, especially in cases inwhich the robot designer is interested in the
assessment of individual robot actions within an ongoing interaction that should not be interrupted by intermittent surveys. In
this paper, we propose a neuro-based method for real-time quantitative assessment of robot actions. The method encompasses
the decoding of error-related potentials (ErrPs) from the electroencephalogram (EEG) of a human during interaction with a
robot, which could be a useful and intuitive complement to existing methods for validating human–robot interaction in the
future. To demonstrate usability, we conducted a study in which we examined EEG-based ErrPs in response to a humanoid
robot displaying semantically incorrect actions in a simplistic HRI task. Furthermore, we conducted a procedurally identical
control experiment with computer screen-based symbolic cursor action. The results of our study confirmed decodeability of
ErrPs in response to incorrect robot actions with an average accuracy of 69.0±7.9% across 11 subjects. Cross-comparisons of
ErrPs between experimental tasks revealed high temporal and topographical similarity, but more distinct signals in response to
the cursor action and, as a result, better decodeabilitywith amean accuracy of 90.6±3.9%. This demonstrated that ErrPs can be
sensitive to the stimulus eliciting them despite procedurally identical protocols. Re-using ErrP-decoders across experimental
tasks without re-calibration is accompanied by significant performance losses and therefore not recommended. Overall, the
outcomes of our study confirm feasibility of ErrP-decoding for human–robot validation, but also highlight challenges to
overcome in order to enhance usability of the proposed method.

Keywords Electroencephalography (EEG) · Passive brain–computer interface (BCI) · Error-related potentials (ErrP) ·
Event-related potentials (ERP) · Error monitoring · Human–robot interaction (HRI)

1 Introduction

1.1 Validating Human–Robot Interaction

More than a decade of research on human–robot interac-
tion [22] has been dedicated to the question of how to make
interaction with robots more intuitive and “natural” for the
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human user [10]. In this regard, the assessment and val-
idation of robot behavior during interaction with humans
is crucial for successfully directing technical improvements
towards more widespread and effective integration of robots
in society. This task can be particularly challenging in the
domain of humanoid and social robotics. Typical scenarios
include collaboration tasks in shared environments [21,29]
and game-based or dialogue social interaction tasks [28,53].
For robot validation, the human’s subjective experience of
the robot’s behavior is usually assessed with survey-based
methods, such as questionnaires [3,4,34] or interviews [41].
The quality of interaction is often additionally assessed with
objective performance measures, such as “time to com-
plete the task”, as in [21,29]. To avoid interruption of the
interaction flow, these measures are often taken at the end
of a task and as such constitute an average assessment of
the performed sequence of actions or events. However, the
assessment of individual robot actions may be beneficial or,
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in specific cases, even required to effectively pinpoint factors
that have influenced the interaction.

1.2 EEG-BasedValidation of Human–Robot
Interaction Using Error-Related Potentials

In this paper, we propose a neuro-based method for real-time
quantitative assessment of the human perception of individ-
ual robot actions immediate to their occurrence, see also
[12]. We understand the proposed method as a potentially
useful complement to existing methods for robot valida-
tion, particularly for cases in which the robot designer is
interested in the assessment of robot actions embedded in
ongoing interaction that should not or cannot be interrupted
by intermittent surveys. The method proposed here encom-
passes the measurement of brain activity during interaction
with a robot. Brain responses, time-locked to the occurrence
of robot actions, are captured and analyzed. In case the human
observes incorrect robot actions, we expect the occurrence
of deviating brain responses compared to the observation of
correct robot actions. Classifying these responses from the
ongoing EEG signals allows for implicit and real-time label-
ing of single robot actions immediate to their occurrence in
a binary fashion (see Fig. 1). In a collaborative assembly
task, an incorrect robot action may be the robot providing
the human a wrong object for the next step in the assembly.
In a game-based or dialogue interaction task, an incorrect
robot action may be the robot performing a social cue, e.g.
gaze contact with the human, in an unexpected, contextually
inappropriate moment.

1.3 Error-Related Brain Responses

Prior research has found that human brain activity is mod-
ulated by both performed [6,16,25,40] and observed [48]
erroneous actions. This neural process is understood to be
related to error-/performance monitoring, crucial for goal-
directed behavior, decision making, planning and execution
of tasks, error handling as well as learning [1,45]. Related
neural modulations, believed to originate from the pre-
frontal cortex, mainly the anterior cingulate cortex [1], have
been shown to be observable as signal deflections in the
human electroencephalogram (EEG), termed error-related
potentials (ErrP) [16,25], a specific type of event-related
potentials (ERP) [5]. Detecting human-observed errors from
the ongoing EEG has already been employed in the field
of brain–computer interfaces (BCI), which were originally
developed to provide a communication channel between
human and machine using brain activity only [56]. In the
context of BCIs for communication and control, ErrPs have
been used to automatically detect erroneous feedback from
the BCI [8,17], and to use this information for correction or
adaptation of the BCI [18,38,43,50,52]. These works showed

that ErrPs can be used to improve the precision of decoding
themental commands fromEEG signals and as such enhance
the quality of interaction between human and device. The
same principle has been applied to the domain of robotics
for automatic improvement of the robotic device [30,37,55].
Recent works have shown that ErrPs are useful as feedback
for reinforcement learning of robot behavior, e.g. robot tra-
jectories [32], association of objects in a sorting task [46], as
well as recognition and imitation of human gestures [36].

1.4 Aim of the Present Study

Most previous studies on ErrPs used computer screen-
based interaction with perceptually simple symbolic stimuli
[17,18,31,51,52]. Others have studied ErrPs in the context
of human–robot interaction [30,32,36,37,46]. An impor-
tant fundamental question is whether and to what extend
observability and decodeability of EEG-based ErrPs are
transferrable betweendifferent types of stimuli. In the present
study, we examined the observability and decodeability of
EEG-based ErrPs in response to a humanoid robot display-
ing incorrect actions in a simplistic HRI task, where robot
actions either conform (congruent, correct action) or discon-
form (incongruent, wrong action) to a selection the human
partner made. Furthermore, we conducted a procedurally
identical control experiment with computer screen-based
symbolic (cursor) action. To the best of our knowledge, no
such comparative studies are currently available. With this
comparative experimental design, we address the following
items with practical implications on the usability of deploy-
ing EEG-based ErrP-decoding for validating human–robot
interaction:

– We verify the observability and decodeability of EEG-
based ErrPs in response to the human observation of
semantically incorrect robot actions.

– We demonstrate that the type of stimulus executing the
action (cursor, robot) cause variations in the EEG signals
and consequently affect the observability and decodeabil-
ity of ErrPs, despite procedurally identical experimental
protocols and the use of the same decoding method.

– We investigate the possibility of deployingErrP-decoders
across experimental tasks, e.g. calibrate the decoder
based on one task and apply it for decoding ErrPs based
on the other task. Despite identical experimental proto-
cols, we show that this task transfer is accompanied by
a significant reduction in decoding performance and dis-
cuss possibilities to overcome this challenge.

By addressing the first item, we aim to confirm feasibil-
ity of detecting ErrPs in response to human observation of
incorrect robot actions. The second item concerns the under-
standing whether and to what extent the type of stimulus can
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Fig. 1 Conceptual illustration
of using ErrPs for robot
validation: a during interaction
with a robot, a human observes
the behaving robot. Meanwhile,
the brain activity is recorded via
electroencephalography and
responses to single robot actions
are captured and analyzed. b
Brain responses associated to
the observation of incorrect
robot action are expected to
deviate from those associated to
the observation of correct
actions. These deviating
responses are believed to
originate from differential
activation of the anterior
cingulate cortex (ACC). c
Classifying these EEG
responses allows implicit
real-time labeling of single
robot actions immediate to their
occurrence, usable for d
post-hoc validation of the robot
behavior. (Color figure online)

affect the observability of ErrPs and if this results in altered
efficiency for decoding ErrPs in response to robot actions.
By addressing the third item, we aim at validating the fea-
sibility of re-using ErrP-decoders across experimental tasks
(choice-reaction time tasks with identical protocols) with-
out the need for re-calibration. After having introduced the
motivation and objectives of the study here presented, the
remainder of this paper is structured as follows: In Sect. 2,
the design (Sect. 2.2) and implementation (Sect. 2.3) of the
study as well as data analysis (Sect. 2.4) are presented. The
corresponding results are reported in Sect. 3 and interpreted
and discussed in Sect. 4. Section 5 concludes the paper.

2 Experimental Study and Data Analysis

2.1 Participants

Thirteen healthy participants took part in the experiment. The
data of two participants were excluded from further analy-
sis: subject s01 due to data corruption during the experiment,
and subject s12 due to having been on medication during the
experiment. The remaining 11 participants were 6 males and
5 females with average age: 29.4 ± 7.4 years. Prior experi-
ence and familiarity with humanoid robots scored 2.8 ± 1.8
on a scale of 1 “unfamiliar” to 7 “familiar”. The partici-
pants were equally instructed about the experiment protocol
and provided informed consent regarding participation in the
experiment. Each participant was paid an honorarium of 8
EUR/h. The study was approved by the institutional ethics
review board of the Technical University of Munich.

2.2 Experimental Tasks and Protocol

Traditionally, the study of ErrPs was largely performed using
choice-reaction time tasks (CRT) and variants [16,25]. To
allow for systematic comparisonswith the current body of lit-
erature on ErrPs and draw from a well-established paradigm,
the experimental tasks were designed based on the principle
of a CRT task with identical protocols in both tasks (Fig. 2):
One out of three possible target stimuli appeared on a com-
puter screen and participants were requested to respond, with
a corresponding key-press, as quickly and precisely as pos-
sible. Feedback to the participant key-press was one of two
possible outcomes: congruent or incongruent response to the
target stimulus. The two experimental tasks differed only in
the type of feedback presented to the participant: In experi-
mental task 1 (cursor scenario), a cursor, centrally placed on
the computer screen, would either move towards (i.e. con-
gruent) or away (i.e. incongruent) from the target stimulus
(Fig. 2, left); in experimental task 2 (robot scenario), the head
of a humanoid robot would either turn towards (i.e. congru-
ent) or away (i.e. incongruent) from the target stimulus (Fig.
2, right). Robot head turns as the corresponding counterpart
to the cursor actions were chosen for having the robot per-
forming actions which can be understood in the sense of
gaze cues [20] and as such being useful for real-world HRI
tasks [42]. This waywe realized an experimental setting with
two tasks of identical procedure, but different connotation:
while the cursor scenario follows traditional protocols used
in the study of ErrPs, the robot scenario deploys an embod-
ied humanoid robotic presence performing actions that can
be useful in realistic human robot social interaction. In both
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experimental tasks, we expected to observe different event-
related potentials (ERPs) in the participants EEG evoked by
congruent (semantically correct) versus incongruent (seman-
tically incorrect) feedback. By varying the type/form of the
feedback only, our design allowed us to test whether and how
the observability and decodeability of ErrPs evoked by sim-
plistic symbolic feedback can be transferred to a scenario
involving the execution of actions by a humanoid robot in a
procedurally identical protocol.

Experimental Setting The experiment took place in a quiet
room which was partitioned into two sections by means of
a sight-proof wall (Fig. 3). On the right side of the room, a
participant was comfortably seated in front of the computer
screen/the humanoid robot. The computer keyboard for cap-
turing the participant responses was located in near distance
to the participant to allow for comfortable access. All but
one participant (s07) performed the key presses with their
right hand. The left side of the room was reserved for the
experimenter monitoring the experiment protocol and a live
visualization of the recorded EEG data.

Experimental Protocol The experimental protocol was
divided into two recording sessions (one for each scenario)
which took place one after another. About half of the par-
ticipants (6 out of 11, cf. Supplementary Table 1) started
with the cursor scenario and the others with the robot sce-
nario. Each scenario was further divided into 10 blocks of
50 trials each; the duration of one block was approximately
2.5 min. Thus, the total duration of the experiment was
around 60 min. After each block, the participant would take
a rest and decide when to continue with the next block in
a self-paced fashion. The participants were first instructed
(verbally and by written instruction) about the experimental
setup including the recording modalities and handed a ques-
tionnaire about personal details. Participants were informed
about the approximate duration of the experiment, but not
about the specific number of trials per block. Participants
were instructed to react as quickly and precisely as possible
to the appearing target stimuli.

Trial Structure Each trial (Fig. 4) started with a pause of
random duration between 500 and 2000 ms in order to avoid
habituation to timing of appearance of the target stimuli.
After the initial pause, one out of three possible target stimuli
appeared on the screen, followed by the participants self-
paced key-press. In response, the feedback was presented in
form of cursor movement (cursor scenario) or robot head
turn (robot scenario) towards or away from the target stimu-
lus. The feedback ended after 130 ms: cursor reached target
stimulus/robot head movement reached end location. A sec-
ond feedback was presented 200 ms afterwards in form of
the appearance of a colored frame around the target stimulus
(green frame = correct, red frame = incorrect). The framed
target stimulus disappeared 300 ms later, which initiated the

robot head turning back to the initial location and the cursor
re-appearing in the center of the screen 600 ms later.

2.3 Stimuli and Apparatus

Stimuli were presented on a 24-in. flat screen LCD com-
puter monitor with 60 Hz refresh rate placed at a distance
of approximately 150 cm from an observer. Participant
responses were registered with the arrow keys of an ordi-
nary computer keyboard. The experiment was programmed
with Python using the Psychopy library [44] and exe-
cuted on an Intel®CoreTM i5 CPU 750@2.67 GHz. The
target stimuli were realized as white squares of size 3x3
cm appearing in three possible locations on the com-
puter screen (left, right, or up). Per trial, one out of the
three possible target stimuli appeared. Participants were
requested to respond with a corresponding arrow key
(left target = left arrow key, right target = right arrow key,
upper target = upper arrow key). Upon participant key-
press, feedback was initiated in form of a cursor (cursor
scenario) or a robot head movement (robot scenario). In case
of correct participant response (response key-press congruent
to the target stimulus location), false feedback events were
introduced in a uniform random fashion with a pre-defined
probability pErr (these events are termed “machine-errors”
for the rest of this paper). Machine-errors were manifested
as cursor movement or robot head turns towards the wrong
direction/incongruent to the target stimulus location. The
wrong direction was selected in a uniform random fashion
among the two remaining non-target directions. To avoid
habituation to the machine error probability, half of the
blocks were executed with a machine-error probability of
pErr = 20% and the other half with pErr = 50%. The
order was pseudo-randomized such that no more than two
subsequent blocks would belong to the same error proba-
bility category. The first block of each scenario was always
executed with pErr = 20% to avoid any confusion in the
beginning of each scenario. In total, 500 trials were collected
per participant and scenario among which were on average
35%machine-error trials and a negligible number of human-
committed error trials. The cursor feedback was realized as
a white square of size 2×2 cm, initially located in the center
of the screen. Upon participant key-press in response to the
appearance of the target stimulus, the cursorwould startmov-
ing towards or away from the target with uniform speed until
reaching the target position after 130 ms. In the robot sce-
nario, the cursor was substituted with a NAOhumanoid robot
located in a crouched posture in front of the computer screen
such that the head position matched the center of the screen.
NAO is a 58 cm tall humanoid robot with 21–25 degrees
of freedom [23] which was controlled by the experiment
program via local area network (LAN) using the Python-
based NAOqi library. In the initial head position (yaw = 0◦,
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Fig. 2 Illustration of the two
experimental tasks. Participants
were requested to respond to
one out of three possible target
stimuli (left, right, up) appearing
on the screen with
corresponding arrow
key-presses. In response, either
a cursor (left) or the robot head
(right) would move towards or
away from the given target. The
yellow dashed arrows show the
directions of possible cursor
movements and robot head
turns. (Color figure online)

Fig. 3 The experimental setup
showing a participant
performing the cursor scenario
(left) and the robot scenario
(right). (Color figure online)

Fig. 4 Trial structure with exemplary illustration of the cursor scenario
(top panel, example for a congruent/correct trial) and the robot scenario
(middle panel, example for an incongruent/incorrect trial). (a) Trial start
and pause of random duration between 500 and 2000ms, (b) appearance
of target stimulus, (c) participant response in form of arrow key press,
start cursor/robot head movement (d) end cursor/robot head movement

(e) target border feedback presentation (correct: green; incorrect: red),
(f) disappearance target, disappearance cursor/start robot head turning
back, (g) re-appearance cursor/ongoing robot head turning back (h) re-
appearance cursor, end of robot head turning back, updating average
reaction time and error count. (Color figure online)

pitch = 0◦), the robot was gazing directly towards the par-
ticipant. Upon participant key-press in response to the target
stimulus, the robot head would turn towards or away from
the target (left: pitch = 0◦, yaw = −40◦; right: pitch = 0◦,

yaw = +40◦, up: pitch = −20◦, yaw = 0◦) and reach the
end position after 130 ms, keep the position for 500 ms and
moveback to the initial headposition.The left upper corner of
the screen informed the participants about the average reac-
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tion time per block in ms. The right upper corner informed
about the number of errors per block with no distinction of
errors committedby theparticipant or themachine.This addi-
tional feedback was shown to the subjects to keep up their
engagement in the task by self-monitoring their own perfor-
mance throughout the experiment.

EEG Recording and Data Pre-processing EEG data
were acquired with a Brain Products actiChamp amplifier
equipped with 32 active EEG electrodes arranged accord-
ing to an extended international 10–20 system [27] (FP1,
FP2, F3, F4, F7, F8, FC1, FC2, FC5, FC6, C3, C4, T7,
T8, CP5, CP6, P3, P4, P7, P8, TP9, TP10, O1, O2, Fz, Cz,
Pz, EOG1, EOG2, EOG3). All leads were referenced to the
average of TP9 and TP10 (average mastoids referencing)
and the sampling rate was set to 1000 Hz. The impedance
levels of all leads were kept below 10 k�. Three channels
were used for capturing electrooculogram (EOG1–3) sig-
nals in three locations of the participant’s face (forehead, left
and right outer canthi) according to a method suggested by
Schlögl et al. [49]. The EEG amplifier was battery-driven and
located on a tray nearby the participant. The data was trans-
ferred via USB to a separate recording PC (Intel®CoreTM i5
CPU 750@2.67 GHz). The amplifier was connected to the
PC executing the experiment protocol via parallel port over
which event triggers were sent to be stored synchronously
with the EEG signals. All EEG data preprocessing was car-
ried out in MATLAB®, in part using functions provided
by the EEGLAB toolbox [11]. The subsequent processing
steps were applied to each dataset (11 subjects × 2 sessions)
separately in the following order: In order to remove high
frequency and power-line noise, we first filtered the signals
of the EEG and EOG channels using a zero phase Hamming
windowed sinc FIR band-pass filter with cutoff frequencies
of 1 Hz and 20 Hz. Next, we identified and interpolated con-
taminated EEG channels using kurtosis with a threshold of
5%. EOG activity in the EEG signals (eye-blink and lateral
eye movements) was corrected using Schlögl et al.’s method
[49]. Afterwards, we re-referenced the EEG signals to com-
mon average (CAR) to further reduce signal contamination
due to external noise sources.

Stimuli Timing In order to ensure precise information
about the moments of presentation of the feedback, the
robot head was equipped with a light emitting diode (LED)
and a photodiode to record the onset of head movements
synchronously with the recording of the EEG signals. The
computer screen was also equipped with a separate photo-
diode to record the timing of the cursor movement. Both
photodiode setups were not directly visible to the partici-
pants and thus not distracting. Ground truth timing of onset
of both cursor and robot head movement was obtained by
analyzing the signals captured by the two photodiodes and
introducing additional event markers into the EEG datasets.

2.4 Data Analysis

2.4.1 Analysis of Behavioral Data

Our experimental design featured identical protocols in both
scenarios with only the appearance of feedback differing.
Therefore, we did not expect systematic behavioral differ-
ences regarding reaction times (RT ) and number of errors
committed by the participants (nErr ) across scenarios. The
purpose of the analysis of behavioral data was to verify the
absence of such systematic behavioral differences. For that,
we performed several statistical tests: we tested whether the
distributions of mean reaction times RT and nErr differ
across the two scenarios. Furthermore, we tested whether the
distributions of RT and nErr differed across first and second
performed scenario, irrespective of type cursor or robot.

2.4.2 Electrophysiological Analysis of Error-Related
Potentials (ErrP) and Their Stimulus-Dependent
Variations

The data was segmented into epochs by extracting time inter-
vals of −500 to 1500 ms relative to the presentation of
the feedback (onset of cursor movement/robot head turn-
ing, t = 0ms). These segments were further separated
into three categories: (1) correct trials (non-error), (2) false
feedback trials (machine-error), (3) human error trials. Per
participant and recording session, we extracted on average
approximately 325 correct trials, 159 machine error trials,
and 16 human error trials. Since human errors were not
in the focus of our investigation, the corresponding epochs
were discarded from further analyses. Error-related poten-
tials encompass the appearance of three main components
on the difference (error minus correct) average time courses:
anN2, a P3, and anN4 component [8,18,51]. These are a neg-
ative deflection around 200 ms, a positive deflection around
300ms, and another negative deflection around 400ms, time-
locked to the appearance and observation of an event of type
error or correct, mainly observable over fronto-central and
fronto-parietal sites. An additional late positive component
(P600, 600 ms latency) was frequently reported in the con-
text of error processing in choice-reaction time tasks [15]
and the experience of syntactic and semantic anomalies in
language comprehension [35,54]. Our investigation encom-
passed the comparative analysis of the shape and timing of
the potentials of each scenario. This was carried out through
the computation of the time-locked average potentials for
the machine-error and non-error potentials in channel Cz,
through the difference average (machine-error minus non-
error averages) and by the computation of the coefficient of
determination r2 [56]. Before averaging, we performed a per
channel baseline correction by subtracting the average ampli-
tude of the period 200 ms prior to the onset of the feedback
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from the entire signal epoch. Spatial ERP activity patterns
were compared by computing the topographic interpolation
of the potentials at the time of the main peaks of the differ-
ence average. Finally, we assessed the similarity of ERP time
courses within the period 0 to 800 ms per subject by com-
puting the 2D correlation coefficients between the difference
average of the cursor and the robot scenario. Furthermore,
we computed the 2D correlation coefficient between the dif-
ference grand average within the period 0 to 800 ms of the
cursor and the robot scenario according to Eq. 1; with C, R
being the difference average ERP of cursor C and robot R
(machine-error minus non-error); withC, R being the means
of all elements in C and R; c being the spatial dimension
(channel), and t being the temporal dimension (sample time
point).

r =
∑

c

∑

t
(Cct − C)(Rct − R)

√∑

c

∑

t
(Cct − C)2

∑

c

∑

t
(Rct − R)2

(1)

2.4.3 Single-Trial Classification and Analysis of Impact of
Stimulus-Dependent Variations

This section describes the methodology of obtaining (cali-
brating) subject-specific ErrP-decoders in order to classify
EEG signals into responses due to the observation of non-
error or machine-error events. The calibration step included
the extraction of relevant features from the EEG signals and
the training of a classification model. The testing/validation
step included feature extraction and application of that clas-
sification model on unseen data within session and across
session.

Feature Extraction In the context of single-trial classifi-
cation of error-related potentials, different types of features
have beenused and reported in previousworks. Temporal fea-
tures extracted from the time series [18,30] have been used in
most cases, being reported as stable and reliable even across
recording sessions [7]. Furthermore, we performed a fea-
ture cross-comparison in one of our earlier works [12] where
we found temporal features being superior over spectral fea-
tures in the context of decoding ErrPs. Therefore, temporal
features were used in this work. For each trial and each chan-
nel, the signal amplitude was averaged within 9 overlapping
100ms-longwindows, relative to the occurrence ofmachine-
error/non-error events for each channel (windows: 100–200
ms, 150–250 ms, 200–300 ms, 250–350 ms, 300–400 ms,
350–450 ms, 400–500 ms, 450–550 ms, 500–600 ms) and
concatenated into the single feature vector of length 243 (27
channels × 9 windows).

ClassificationThe classifier used in the analysis was a reg-
ularized version of the linear discriminant analysis (rLDA)
[19]. The rLDA classifier has been established as a robust

method to discriminatemental states based onEEG signals in
the field of brain–computer interfaces [5]. The LDA discrim-
inant function is the hyperplane discriminating the feature
space corresponding to two classes: y(x) = sign(wT x + b),
with x being the feature vector, w being the normal vector to
the hyperplane (or weight vector), b the corresponding bias,
and y(x) ∈ {−1, 1} the classifier decision. The weight vector
and bias were computed byw = (μ̂2 − μ̂1)(�̃1+ �̃2)

−1 and
b = −wT (μ̂1 + μ̂2), with μ̂ j being the class-wise sample
means, and �̃ j being the class-wise regularized covariance
matrices. Regularization aims at minimizing the covariance
estimation error by penalizing very small and large eigen-
values. This leads to robust covariance estimates even for
high dimensional feature spaces [5] as in our case. The
regularized covariance matrices were computed by �̃ j =
(1 − λ)� j + λν I , with λ ∈ [0, 1] ⊂ R being the shrink-
age parameter, ν the trace (sum of diagonal elements) of � j

divided by the number of features, and I the identity matrix.
The optimal shrinkage parameter λ was determined auto-
matically based on the given training data using the analytic
method proposed by Schäfer and Strimmer [47].

Within-SessionValidationWevalidated the abovedescribed
modeling approach within session (cursor, robot) using a
10-times-10-fold cross-validation scheme. Per session and
subject, the trialswere randomly split in 10 folds, 9 foldswere
used for model calibration and the remaining fold was used
for testing. This procedure was repeated until all folds were
once used for testing. The entire procedure was furthermore
repeated for 10 times. Each time and fold, the number of trials
per class of the calibration data was balanced by random pick
and replace (please note that the number of trials per class
was initially unbalanced with ˜65% non-error and ˜35%
machine-error trials). This analysis allowed us to obtain an
estimate of how well subject-specific ErrP-decoders would
perform in classifying unseen data when being calibrated
with different data of that same session. Individual classifi-
cation results per time and fold were averaged and reported
per session and subject as percentage of correctly classified
trials (overall accuracy, ACC = (T P + T N )/(T P + FP +
FN+T N )); percentage of correctly classifiedmachine-error
trials (true positive rate, T PR = T P/(T P+FP)); percent-
age of correctly classified non-error trials (true negative rate,
T N R = T N/(T N + FN )); and in addition as the area
(AUC) under the receiver operator curve (ROC) since this
measure can be more informative when reporting classifica-
tion results based on data with class imbalance.

Cross-session Validation Furthermore, we performed a
per subject cross-session validation in two steps: calibration
with the cursor data and testing on the robot data, calibra-
tion with the robot data and testing on the cursor data. This
analysis allowed us to obtain an estimate of how well a
subject-specific ErrP-decoder would perform in classifying
data of one session when being calibrated with data of the
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other session. The number of trials per class was balanced in
the calibration data by random pick and replace. To increase
the likelihood that most of the trials were used for calibra-
tion at least once, this procedure was repeated 100 times. The
weight vectorsw and biases b of the resulting 100 individual
rLDAs were averaged to obtain a final rLDA. Testing was
performed on the unbalanced data of the test session. Results
are reported identical to thewithin-sessionvalidation asACC,
TPR, TNR, and AUC.

3 Results

3.1 Behavioral Data

Subject individual data are summarized in Supplementary
Tables 1 and 2. Mean reaction times did not significantly
vary across type of scenarios (RT cursor = 421 ± 75ms,
RT robot = 403 ± 43ms, Wilcoxon’s signed-rank test,
p = 0.123). Number of human-committed errors did not
significantly vary across type of scenario (nErrcursor =
17 ± 14, nErrrobot = 16 ± 8, Wilcoxon’s signed-rank test,
p = 0.916). Mean reaction times did not significantly vary
across first and second performed scenario irrespective of
type (RT first = 415 ± 52ms, RT second = 410 ± 71ms,
Wilcoxon’s signed-rank test, p = 0.240). Number of human-
committed errors did not significantly vary across first and
second performed scenario irrespective of type (nErrfirst =
13± 10, nErrsecond = 19± 13ms, Wilcoxon’s signed-rank
test, p = 0.095). We conclude no effect of type of scenario
or scenario order on reaction times and number of human-
committed errors.

3.2 Error-Related Potentials (ErrP)

Results of the electrophysiological analysis of error-related
potentials (ErrP) and stimulus-dependent signal variations
are depicted in Fig. 5. The left and middle panel show the
grand average ERPs for each category (blue: non-error, red:
machine-error) and the difference average (dashed black:
machine-error minus non-error) for each scenario (left panel:
cursor, middle panel: robot). In both scenarios, the shape
of the difference grand averages were similar to those pre-
viously reported [8,18,51] with regard to the timing and
topographical distribution of the components N2 and P3.
The expected N4 component is not observable in our data.
Instead, we observed another late positive component with
a latency of approximately 500 ms. This effect might be
related to the P600 component which has been reported in the
context of error processing as well as in response to syntac-
tic and semantic anomalies [35,54]. These findings indicate
that the observed effects originated from error-/performance
monitoring processes. The characteristics we observed in the

difference ERPs of the cursor scenario are significantly less
pronounced in the robot scenario. The grand average time
courses of the robot scenario are attenuated in peak ampli-
tudes and topologically less clearly distinguished than in the
cursor scenario. This is also reflected in the results of the
analysis of the coefficient of determination r2 based on chan-
nel Cz. In both scenarios, highest grand average r2-values
were observed at similar time points (cursor: r2max = 0.14 at
t = 261,ms, robot: r2max = 0.04 at t = 263ms). The simi-
larity analysis revealed a correlation coefficient of r = 0.70
between spatio-temporal difference grand averages of both
scenarios. Subject individual computation of the 2D correla-
tion coefficient between spatio-temporal difference averages
resulted in median r = 0.48 and exclusively all subjects
with a positive 2D correlation coefficient (subject-individual
results are reported in Supplementary Table 3). We conclude
that the ErrPs observable in both scenarios were qualitatively
similar in terms of shape, timing, and topographical distribu-
tion. This indicates that the observed effects originated from
the same underlying neural process.

3.3 Single-Trial Classification

The within-session single-trial classification results are
depicted in Fig. 6 (left panel) and detailed in Supplemen-
tary Tables 4 and 5. Across-subject average classification
performance for the cursor scenario resulted in 90.6± 3.9%
accuracy with TPR: 87.3 ± 4.3%, TNR: 92.2 ± 3.8% and
AUC: 0.95 ± 0.03. For the data of the robot scenario, we
observed significantly reduced and higher variant within-
session classification performance of 69.0 ± 7.9% accuracy
with T PR : 66.1 ± 6.5%, TNR: 70.6 ± 9.1%, and AUC:
0.73 ± 0.1. The reduced classification performance based
on the data of the robot scenario was systematic across all
subjects (ACC: −21.6 ± 7.8%, TPR: −21.2 ± 8.1%, TNR:
−21.7 ± 8.2%, AUC: −0.21 ± 0.1), however, with non-
significant correlation between classification results of each
session (rACC = 0.27, p = 0.41; rAUC = 0.17, p = 0.61,
Pearson’s correlation, n = 11). All subject-individual clas-
sification accuracies were above the sample size adapted
chance-level of 53.6% (p < 0.05) for binary classification
according to [9].

The cross-session single-trial classification results are
depicted in Fig. 6 (right upper and lower panel) and detailed
in Supplementary Tables 6 and 7. For calibration with the
cursor data and testing with the robot data, across-subject
average classification performance resulted in 68.3 ± 6.1%
accuracy with TPR: 34.9 ± 13.0%, TNR: 86.4 ± 10.8%,
and AUC: 0.68 ± 0.11 (Fig. 6, right upper panel). Cross-
session classification performance showed high correlation
with subject-individual spatio-temporal ERP similarity mea-
sures (rACC = 0.80, p = 0.003; rAUC = 0.79, p = 0.003,
Pearson’s correlation, n = 11). Except for subject s10, clas-
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Fig. 5 Grand average signals over Cz time-locked to the onset of
feedback (cursor movement, robot head turn) for each category (blue:
non-error, red: machine-error) and the difference grand average (dashed
black: machine-error minus non-error), for both scenarios (left panel:
cursor, middle panel: robot). The r2-values for between non-error and
machine-error are depicted below each plot, where bright colors indi-
cate high values. The difference grand average is furthermore depicted
as topographic plots for the main peaks above each plot and in form of
a spatio-temporal activity matrix across all channels and time points

below each plot. The right panel shows the resemblance of differ-
ence (and normalized difference) grand averages of channel Cz of both
scenario as well as the across-subject distribution of 2D correlation
coefficients between difference average of cursor and robot scenario
with median r = 0.42. The dashed red line depicts the difference grand
average 2D correlation coefficient r = 0.70. Please note that differ-
ent axes scaling was used to facilitate qualitative comparisons. (Color
figure online)

sification accuracies were above chance-level, however with
a systematic bias between TPR and TNR: across all sub-
jects, we observed consistent low classification rates for
class machine-error and high classification rates for class
non-error. This is most likely related to shifts in the dis-
tributions of features favored by the rLDA classifier for
separating the cursor data, causing the decision boundary
to favor one class over the other in the robot data. For cali-
bration with the robot data and testing with the cursor data,
average classification performance resulted in 73.1± 13.0%
accuracy with TPR: 70.3± 24.8%, TNR: 74.7± 11.6%, and
AUC: 0.78 ± 0.18 (Fig. 6, right lower panel). No classifica-
tion bias was observed for the robot-to-cursor transfer, but
a decrease of accuracy compared to the within-cursor val-
idation accuracies. This is most likely related to the rLDA
favoring features in the robot data which have less discrimi-
native power in the cursor data. Cross-session classification
performance showedhigh correlationwith subject-individual
spatio-temporal ERP similarity measures (rACC = 0.57,
p = 0.06; rAUC = 0.61, p = 0.05, Pearson’s correlation,
n = 11). In all but two subjects (s08, s10), classification
accuracies were close to or above 70%with an AUC > 0.73

and no systematic bias between TPR and TNR. The fact that
s08 and s10 revealed also very low accuracies in the within-
session validation of the robot data may explain why their
cross-session classification results turned out to be low as
well.

4 Discussion

ErrPs are decodeable in response to incorrect robot actions,
but decoding performance is sensitive to the stimulus

With the results of our study, we confirm feasibility of
decoding ErrPs in response to the human observation of
semantically incorrect robot action.We obtained a classifica-
tion accuracy of average ACCrobot = 69.0±7.9% across 11
subjects, which is comparable to results in response to robot
actions obtained by others [32,46,55]. For the cursor task, we
obtained an average classification accuracy of ACCcursor =
90.6 ± 3.9% which is comparable or higher than previously
reported single-trial classification results based on ErrPs
in response to screen-based stimuli [8,18,51]. From these
results, we draw the conclusion that the observability and
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Fig. 6 Single-trial classification results: Per subject and averagewithin-
session classification results (left panel). Per subject and average
cross-session classification results with calibration based on cursor
data and validation on robot data (right upper panel) and calibration
based on robot data and validation on cursor data (right lower panel).

Classification results are reported as percentage of correctly classi-
fied machine-error events (TPR), percentage of correctly classified
non-error events (TNR), total percentage of correctly classified events
(ACC), and area under receiver operator curve (AUC). (Color figure
online)

decodeability of ErrPs is sensitive to the appearance of the
stimulus eliciting them, even in procedurally and seman-
tically simplistic tasks. Besides the lower accuracy in the
robot task, we observed higher variations of decoding accu-
racy indicating that subjects seemed to have responded more
differently to the robot than to the cursor, e.g. s04, s06,
s07, s13 with ACCrobot > 75% and s08, s09, s10 with
ACCrobot < 65%, and s10 close to chance level (c.f. Sup-
plementary Table 5). We hypothesize that the variations of
observability and decodeability of ErrPs across experimen-
tal tasks are most likely related to the differential perceptual
complexity of the feedback stimuli eliciting them. A follow-
up study examining ErrPs in response to a wider range of
stimuli with systematic variation of complexity may help
to explain the observed variations. The ErrPs observable in
both scenarios were qualitatively similar in terms of shape,
timing, and topographical distribution. This indicated that
the observed effects originated from the same underlying
neural process. Based on this finding, we tested whether
ErrP-decoders calibrated with the data of one task can be
re-used to classify responses based on the other task. The
cross-session single-trial classification analysis resulted in an
across-subject consistent classification bias for the cursor to
robot transfer (high classification rate for non-error and low
classification rate for machine-error events) and a significant
drop of classification accuracy for the robot-to-cursor trans-

fer compared to the respective within-session results. Based
on these results, we do not recommend a straightforward re-
use of the ErrP decoders across tasks without re-calibration.
Despite the observed variation between experimental tasks,
our results demonstrated and confirmed feasibility of decod-
ing ErrPs in response to the observation of semantically
incorrect robot actions given that ErrP-decoders are cali-
brated based on data of the same task. In reference to the
huge potential of ErrP-decoding shown by others [32,36,46]
and combined with the benefit of real-time assessment of
individual robot actions, we are confident that the proposed
method can be of substantial help in validating human–robot
interaction in the future.

ErrPs can potentially be used in more complex HRI sce-
narios
We purposely designed a relatively simple HRI scenario to
demonstrate principal feasibility of decoding the human per-
ception of semantically incorrect robot actions. Furthermore,
the chosen experimental paradigm allowed us to compare the
ErrP responses in the robot task to those obtained in response
to a simplistic stimulus in a procedurally identical task. The
robot scenario in our study resembles most that of a real-
world HRI task, in which the robot designer is interested
in validating the congruency of robot gaze cues with the
human partner’s expectations. In a recent follow-up study
we investigated as to which extent the results of the present
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study are transferable to such a more realistic HRI task. The
results of this work showed that ErrPs, online decoded from
the human interaction partner, can be used to both validate
the congruency of robot gaze cues with the human partner’s
expectations and likewise to successfully adapt the robot’s
gaze behavior during interaction [13]. Whether and to what
extent the outcomes of our present study scale to even more
complex HRI scenarios with different types of robot actions
remains open for future work. In light of the findings we
can, however, state that the brain responses we observed in
both experimental tasks were related to error/performance
monitoring due to their temporal and topographical similar-
ity with previously reported ErrPs in different experimental
paradigms [18,51]. This supports the notion that we indeed
observed and decoded the effects of a high-level “generic”
neural process, that is understood to be largely unrelated to
the situational context or the associated stimulus [26,40].
A relevant research question for follow-up investigations
is whether and how these observed effects extrapolate to
responses due to robot actions that are not per se catego-
rized into semantically correct or wrong. Possible examples
are situations in which robots perform correct actions, but in
unexpected or inappropriate moments, or situations in which
the judgment of correctness of actions is dependent on the
human’s subjective interpretation. The study of ErrPs in the
context of human–robot interaction is therefore always a co-
investigation of both the technical system and the human
with potential contributions to a better understanding of both
sides.

Practicality inErrP-based validation ofHRI denotes chal-
lenges to overcome
A few aspects render the method of ErrP-decoding for robot
validation laborious and impractical to be readily deploy-
able: Firstly, the cumbersome, expensive, and sensitive
EEG setup, and secondly, the necessity for subject-specific
(re-)calibration of the ErrP-decoder. The need for inexpen-
sive and easy-to-use EEG systems with sufficient signal
quality has already been recognized by the BCI community
[24]. Along this line of research, we made a contribution
in the form of the development of a simple, mobile, and
comparably inexpensive (˜800USD) EEG system [14]. Our
device was deployed in a study investigating sensorimotor
rhythms in patients suffering from cerebral palsy while per-
forming an adapted serial reaction time task [2]; the usability
of our device for measuring and decoding ErrPs remains
to be tested. Subject-specific (re-)calibration is a generally
recognized issue thwarting practicality of brain–computer
interfaces [39]. Non-stationarities and dissimilarities of EEG
signals across recording sessions and subjects generally ren-
der (re-)calibration a necessity for sufficient functionality of
BCIs. ErrPs have, however, been shown to be stable across
recording sessions within the same subject and experimen-
tal task up to 600 days [7,18]. This indicates that re-using

ErrP-decoders without re-calibration is principally possible
if subject and task remain the same across experimental
sessions. Furthermore, cross-task transfer learning has been
shown to significantly reduce calibration based on just a few
observations of the new task [31,33].

5 Conclusions

In this paper, we presented a neuro-based method for real-
time quantitative assessment of robot actions during HRI
using EEG-based error-related potentials. To demonstrate
usability, we conducted a study examining the observabil-
ity and decodeability of ErrPs in response to incorrect
robot actions in comparison to responses to simplistic
computer screen-based cursor actions. The results of our
study demonstrated decodeability of ErrPs in response
to incorrect robot actions with an average accuracy of
69.0 ± 7.9%. This supports feasibility of our proposed
method of using ErrPs for validating robot behavior. Com-
parisons across experimental tasks revealed more distinct
signals in response to the cursor action and, as a result,
better decodeability with a mean accuracy of 90.6 ±
3.9%. This demonstrated that ErrPs can be sensitive to
the stimulus eliciting them despite procedurally identical
protocols. The observed ErrPs were qualitatively similar
across experimental tasks, indicating that they originated
from the same underlying neural process. However, a
straightforward re-use of ErrP decoders across experimental
tasks without re-calibration is accompanied by performance
losses and therefore not recommended. Overall, the out-
comes of our study confirm feasibility of ErrP-decoding
for human–robot validation, but also highlight challenges
to overcome in order to enhance usability of the proposed
method.
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