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Abstract— Today, a substantial part of human interaction
is the engagement with artificial technological and
information systems. Error-related potentials (ErrPs)
provide an elegant method to improve such human-machine
interaction by detecting incorrect system behaviour from the
electroencephalography (EEG) signal of a human operator
or user in real time. In this paper, we focus on adaptive
subject-independent classification models particularly suitable
for the task of ErrP decoding. As such, they provide a
promising method to overcome the need of individualized
decoding models, which require a time consuming calibration
phase. In a comparative study we evaluate the performance
of a decoding model solely trained on prior data and the
effectiveness of adapting this model to a new subject. Our
results show that such a generalized model can decode ErrPs
with an acceptable accuracy of (72.73 ± 5.27)% and that
supervised adaptation can significantly improve the accuracy
of the generalized model. Unsupervised adaptation did only
prove useful for some subjects with high initial model accuracy
and requires more sophisticated methods to be practical for a
broader range of subjects. Consequently, our work contributes
to the development of calibration-free ErrP decoding, which
can potentially be used to improve human-robot interaction.

I. INTRODUCTION

Within the last century, the ongoing development of tech-
nological and information systems fundamentally changed
the way we perceive and interact with our surroundings.
Nowadays, we do not only interact with other humans,
but more and more frequently also with intelligent artificial
systems, which can be considered as human-computer (HCI)
or human-machine interaction (HMI). In most of such scenar-
ios, the human has active control over the system and hence
expects it to react by a distinct response to his command.
If it does not, the system is considered flawed, which can
have fatal consequences in the worst case. Consequently, one
fundamental aspect of all intelligent technological systems
is the correct interpretation and execution of the user’s
intention. Hence, a much desired ability is the evaluation of
system behaviour in an online and non-interrupting manner.
As error perception and evaluation are essential abilities of
all humans, characteristic changes in the neurophysiological
activity are measurable in the prefrontal cortex directly after
observing wrong responses from an interaction partner [1],
[2]. Indeed, such error-related potentials (ErrPs) provide
an elegant way to detect incorrect system behaviour from

the electroencephalography (EEG) signal of a human op-
erator or user. Several groups implemented such passive
brain-computer interfaces (BCIs) which monitor a subject’s
neurophysiological behaviour to decode ErrPs in real-time.
Thus, this neuronal evaluation signal can be used to correct
wrong system behaviour [3]–[9], for unsupervised adaptation
[10] as well as teaching robotic skills [12], [13] and co-
adapting robot behaviour during human-robot interaction
[11]. Nonetheless, utilizability of ErrPs is currently impeded
by the non-stationarity of the EEG signal [14], [15], which
leads to variations in the signal of different subjects. As
this also reflects in different feature distributions [16]–[18],
simply transferring a pretrained prediction model to classify
data from a new person is consequently, on the one hand,
accompanied by grave performance losses [3]. On the other
hand, generating subject-specific decoding models involves
a time consuming initialization phase as lots of training
data is required for model calibration. However, for practical
subject independent systems both approaches are unpractical
as the only information available would be labeled data from
prior subjects and some unlabeled trials from a new subject.
Fortunately, information transfer and adaptive classification
models provide alternative techniques: by combining both
methods it is possible to generate decoders which adapt to
the subject-specific characteristics without the need for a time
consuming initialization phase [10], [19]–[23].
Thus, Iturrate et al., 2011, replaced the calibration phase
in ErrP decoding by inter-subject information transfer [23].
They started classification in an early stage with a classifi-
cation model trained on pooled data of multiple subjects.
Afterwards, they adapted the model towards a different
subject by incorporating new labeled trials. This approach
also proved useful for motor imagery classification. Lotte
and Guan, 2009 [24] and Vidaurre et al., 2011 [20], applied
a similar approach which is also feasible in unsupervised
settings as no labeled information from new subjects is
needed. However, their approach is not easily transferable
to other paradigms as it makes some assumption about the
underlying nature of inter-subject variations, which are not
given by ErrPs.
We supplement the previous work by analyzing the capa-
bilities and limitations of an adaptive classification model
similar to the one used in [23] and [24] when applied to ErrP



decoding. Thereby, we first test the feasibility of reusing data
from other subjects and second, evaluate the effectiveness of
model adaptation. In doing so, we demonstrate that model
initialization from prior data combined with supervised adap-
tation is very effective and preferable to a minimal sample
calibration. Although unsupervised adaptation did not lead
to a performance increase for most subjects, it is promising
especially in the case of high accuracy of the initial model.

II. MATERIAL AND METHODS

A. Single trial classification

Due to its simplicity and effectiveness, linear discriminant
analysis (LDA) is a widely used classification method for
classifying EEG signals [25]. ErrP decoding is a binary
classification problem. Hence, all trials can be split into
the two classes C1 (error), C2 (non-error) and the class-
wise Gaussian distributions with the parameters µ1,µ2 as
classwise means and Σ as the shared covariance, which
is assumed to be equal for both classes. For covariance
estimation, a shrinkage approach with optimal shrinkage
intensity was used [26]. Single trials were classified by
a LDA classifier which computes a decision boundary as
follows:

D(x) = [b,wT ]

[
1

x

]
(1)

w = Σ−1(µ2 − µ1) (2)

b = −wT µ̄ (3)

µ̄ =
1

2
(µ1 + µ2) (4)

New trials are classified by computing the distance D(x)
of the feature vector to the separating hyperplane. Hence, a
class decision is made based on the sign of D(x):

x ∈

{
C1 if D(x) < 0

C2 if D(x) > 0
(5)

B. Model adaptation

For every new trial xt, classifier adaptation was imple-
mented by adjusting the parameter µi of the class specific
probability distributions by

µi(t+ 1) = (1− λ)µi(t) +
λ

N(t)

N(t)∑
t=1

xt (6)

λ is the update coefficient which determines the rate of
adaptation and N(t) is the total number of available trials
from the current subject.

This adaptation approach proved particularly suitable for
ErrP decoding mainly because of three reasons: first, class-
wise mean adaptation is superior to pooled mean adaptation
as previous feature analysis revealed the class dependency

of variations in the individual subject’s ErrPs. Similar to
[23], error trials seem more variant across subjects than non-
error trials. Thus, adapting only the pooled mean is not
applicable as this would not account for class dependent
variations. Second, adapting only the mean values but not the
covariance seems sufficient as additional covariance adapta-
tion did not lead to a noteworthy performance increase in our
experiments. Further, when performing covariance adaptation
n(n + 1)/2 covariance matrix entries need to be estimated
from a n-sized input vector, which is - especially in the case
of limited user data - highly unreliable. By restricting to
mean adaptation, this ratio reduces to a linear n to n relation.
Third, when comparing single trial adaptation to trial average
adaptation, the latter approach has the benefit of scaling the
relevance of new trials with the usage time of the system. In
other words, the approach ensures convergence to the mean
value of all trials of the user. The fact that this approach
neglects within session adaptation is less relevant as ErrPs
seem to be stable over time [27].

C. Scenarios

For a systematic evaluation of the proposed adaptive LDA
model, we will compare five scenarios. These scenarios use a
different amount of information from new and prior subjects.

1) 10-fold cross validation (CV): To test the performance
of the proposed LDA classifier, 10-fold cross validation was
performed separately for every subject. This is a standard
scenario in reporting classification results in non-adaptive
brain-computer interfaces and represents an optimal subject-
specific model.

2) Minimal sample calibration (MSC): This scenario im-
plements the traditional training of a subject-specific clas-
sifier with minimal samples. The calibration set consists
of balanced calibration trials from the current subject only
and increases over time as more trials get available. For
data balancing, random undersampling was performed and
the results of ten repetitions were averaged to compensate
effects of differently balanced training sets. Then, the model
is retrained for every new available trial of the subject. As
the label information is needed for (re-)training and at least
some labeled data is necessary for classifier training, this
scenario is only possible in a supervised manner and cannot
be used to classify the first trials of the subject. The main
difference to the CV scenario is the reduced number of trials
used for model training which would have a positive effect
on the calibration time.

3) Generalized model (GM): A generalized model can
be built without any information of the current subject by
training a LDA on a balanced training set which contains
all prior trials from other subjects. To compensate effects
induced by random undersampling, 100 LDA models were
trained on separately balanced train sets and their parameters
were averaged for the final generalized model. When applied
to new users, instantaneous ErrP decoding1 is feasible,

1instantaneous ErrP decoding in this context should be understood in the
sense that a meaningful classification model is available without calibration
from the beginning on.



though with presumably lower classification accuracy as
no individual feature characteristics are captured in the
generalized model.

4) Supervised adaptation (SA): To maximize the de-
coding performance of the generalized model, adaptation
towards a new subject was implemented according to 6. If
class labels for new trials are available, supervised adaptation
can be applied by using the labelled information to determine
which class should be adapted.

5) Unsupervised adaptation (UA): If labelled trials are
not available, only unsupervised adaptation is feasible. A
label for each new trial can be predicted by the adapted
generalized model LDAGM (t) (adapted with all available
user trials at time t). Based on this label, the class parameters
are adapted according to Equation (6). Provided that the
adaptation rate can be initialized reasonably, this scenario
would be suitable for instantaneous adaptive online ErrP
decoding.

D. Experimental data
The different scenarios were evaluated on an in-house

dataset2 which contains valid3 EEG recordings of twelve
different subjects. This allowed us to simulate a system
shared by different users with a sufficient amount of prior
data. In a computer-based interaction scenario participants
were sending directional commands depending on a visual
stimulus. They perceived the movement of a cursor as
feedback. To force the elicitation of error potentials in the
subjects EEG, pseudo-randomized wrong cursor responses
were introduced. This experimental setup is similar to those
of other groups which demonstrate the feasibility of ErrP
decoding [23]. EEG signals were recorded with a Brain Prod-
ucts actiCHamp amplifier with 32 active electrodes, arranged
according to the international 10-20 system. Three channels
were used for post-hoc artifact correction and all leads were
referenced with respect to the average of the left and right
mastoids (TP9 and TP10). With this setup, 500 trials per
subject were recorded of which approximately 175 (35%) are
wrong cursor responses. Data preprocessing consists of band-
pass filtering, artifact correction, re-referencing, detrendering
and downsampling as in [4]. Furthermore, the EEG data of
each trial was segmented in a window of [−200ms; 1000ms]
time locked to the onset of the cursor movement. After
preprocessing, temporal features were extracted similar to
[4] by calculating the arithmetic mean of the signal in ten
partially overlapping time windows from [0ms; 800ms] after
feedback presentation. In total, 270 temporal features (27
channels x 10 windows) were extracted for every trial of
every subject.

E. Evaluation and reporting of results
The testing set for all scenarios consists of the last 100

trials of the current subject. As only the training but not the

2Dataset with detailed description available at https://github.
com/stefan-ehrlich/dataset-ErrP-HRI

3the data of one subject was removed from the dataset due to technical
problems during data acquisition

Fig. 1. Top: Averaged balanced classification accuracies for the CV (black),
the MSC (blue), the GM (cyan), the SA (green) and the UA (red) scenario
in a 95% confidence interval plot. Bottom: difference in model bACC due
to adaptation in blocks of 70 trials; ∆bACCSA = bACCSA−bACCGM

(green) and ∆bACCUA = bACCUA − bACCGM (red). Note: Figures
are better readable when printed in color

testing set is balanced, the performance of the different sce-
narios will be evaluated by comparing the balanced accura-
cies bACC of the LDA classifiers, which is the average of the
true positive and true negative rate. As the optimal adaptation
parameter λ is not known a priori, we performed a grid-
search by varying the adaptation rate between [0.001; 0.05]
in 0.001 steps. The rate which led to the highest overall
bACC increase for each subject and scenario was calculated
post-hoc. The average of all individual optimal adaptation
rates was used to initialize λ. Thus, we computed the global
optimal adaptation parameter λSA

global = 0.019 and λUA
global =

0.009 for the SA and UA scenario respectively.

III. RESULTS

A. Comparing subject dependent and subject independent
models

Besides the decodability of ErrPs in general, a prerequi-
site for calibration-free systems is the feasibility of model
initialization. Here, it is practical to rely on data which is
available prior to system usage as we did in the GM scenario.
Comparing the averaged balanced accuracies of this scenario
to the CV scenario (Figure 1, top plot), we can report three
main results. First, in the case of optimal individualized
decoding models reliable ErrP decoding is possible with
bACC of on average (88.29±2.13)% (CV scenario). Second,
reusing data of prior subjects is practicable to generate a
generalized model which resulted in acceptable accuracies
of (72.73±5.27)% (GM scenario). Third, as expected, there

https://github.com/stefan-ehrlich/dataset-ErrP-HRI
https://github.com/stefan-ehrlich/dataset-ErrP-HRI


is a significant performance decrease between the accuracies
of the individualized (CV scenario) and generalized (GM
scenario) models of on average −(15.56± 18.65)%. Hence,
model initialization without any data from the current subject
is feasible but not optimal.

B. Effectiveness of model adaptation

To further increase the performance of the generalized
model, we analyzed the effectiveness of model adaptation
as described in II-B. Therefore, we defined five segments
of 70 trials each in which we compared the difference
between the static GM scenario and the adaptive SA
and UA scenarios (Figure 1 bottom). This indicates the
performance increase due to adaptation with regard to the
amount of data acquired from a new subject. Looking at the
adaptation performance, the beneficial effect of supervised
adaptation is clearly visible: the balanced accuracies of the
SA scenario (green) are significantly (two-sided Wilcoxon
signed rank test, α < 0.05) above the ones of the GM (cyan)
after approximately 100 trials and also slightly above the
MSC scenario (blue). During the first 50 trials adaptation
could not improve the GM scenario but accuracies were
approaching to (84.23 ± 4.02)% in the later stage (Figure
1, top). Thus, a high classification accuracy only slightly
below the CV scenario is established after a certain amount
of trails (about 300 in our case). Afterwards, new trails are
outweighed by their precursors which linearly slows down
the adaptation.
Unsupervised adaptation as in the UA scenario (red curves
in plot) behaves differently and leads to an unlearning
effect: the accuracies drop noteworthy below the ones of the
static GM scenario within the first 50 trials and converge to
(68.5± 7.5)%, which is on average −(3.85± 5.15)% below
the GM scenario accuracy. Besides the pooled balanced
accuracy, Figure 3 shows the bACC for the different
scenarios for every individual subject. In line with Figure
1, the bACCs of the supervised adaptation (green) are
above the ones of the GM model for all subjects, except
S10. For this specific subject, adaptation is not practical
as the GM model already outperforms the CV model. On
the contrary, the performance of the UA scenario is not
as homogeneous as the SA scenario: while unsupervised
adaptation indeed improves the accuracy of the GM model
for some subjects (S3, S5, S6, S8), it is detrimental for
others (S1, S7, S10, S11, S12).
As the only difference between both scenarios is the
reliability of the label of new user trials - which is 100%
in the SA scenario and the current model accuracy in the
UA scenario - we analyzed the relation between the model
accuracy and the performance increase when adapting the
model. Figure 2 illustrates the performance difference of the
supervised SA and unsupervised UA scenario. Depending
on the current model accuracy bACCmodel(t) in the UA
scenario, we computed the difference in the adaptation
performance ∆bACCadapt(t) to the SA scenario. One can
observe that the difference between SA and UA scenario
as well as the unlearning effect is especially prominent if

Fig. 2. Comparison of SA and UA scenario with regard to model
accuracy and adaptation performance. ∆bACCadapt(t) = bACCUA(t)−
bACCSA(t) and bACCmodel(t) is the current balanced accuracy of the
UA model. The dots mark the results obtained from each block of 70 trials
as in Figure 1 (bottom plot). The individual initial model accuracy is equal
to the GM accuracy (marked with a white star in the Plot). The plot is
separated in two regions (red and green) where the interception with the
y-axis is at the mean bACCGM . Note: Figures are better readable when
printed in color

the initial model accuracy is low (orange region in plot).
On the contrary, unsupervised adaptation increased the GM
performance for all subjects whose initial GM accuracy is
above the mean GM accuracy of 72.73% (green region) and
supervised adaptation is applicable4. Surprisingly, for one
subject with very high model accuracy (S3) unsupervised
adaptation even outperformed supervised adaptation.

IV. DISCUSSION

A. Generalized model

Within the context of inter-subject information transfer, an
ideal generalized classification model should capture subject-
independent feature characteristics and neglect subject-
specific information which could impede transferability
[19]. However, each subject’s ErrPs have an individual
timing, amplitude and spatial distribution. Thus, the
proportion of subject-specific and therefore noisy feature
information is fairly high in the generalized model. In
contrast, the CV scenario is unaffected by these subject-
to-subject variations which explains the higher average
performances of this scenario. For the same reason we
suspect that the use of simplistic classification models
with a reduced number of parameters is preferable
when constructing a generalized model as they are less

4for subject S10 adaptation with any of the presented methods is not
helpful as the GM scenario already outperforms the CV scenario; for Subject
S6 unsupervised adaptation with the first 70 trials is superior to supervised
adaptation but also not helpful



Fig. 3. Individual balanced classification accuracies for the CV (black), the MSC (blue), the GM (cyan), the SA (green) and UA scenarios (red). The grey
dotted curves are the results obtained by varying the adaptation rates in the grid search approach for the UA scenario. Note: Figures are better readable
when printed in color

prone to overfitting unreliable subject-independent feature
characteristics from the shared training-set. Furthermore,
they can be individualized efficiently as only few parameters
need to be adapted. In line with [23] we also suggest that
a higher number of subjects leads to a better transferability
and performance of the generalized model. An increased
number of subjects in the training set minimizes the risk of
modeling subject-specific feature characteristics while at the
same time enhances the modeling of subject-independent
characteristics.

B. Adaptation

Regarding the adaptation, especially the lower
performance of the UA scenario compared to its supervised
counterpart is conspicuously. One obvious reason is the
partially unreliable label information of new trials. While in
the SA scenario, parameters of always the correct class are
adapted, parameter adaptation in the UA scenario is correct
only with the current accuracy of the decoder. This gives
rise to the assumption of a minimal GM model accuracy
needed for the UA approach to be practicable, which indeed
is in line with our findings. Consequently, increasing the
generalized model accuracy is of high interest as this would
not only improve the classification accuracies in an early
stage but most likely also the unsupervised adaptation. As
we did not take into account that ErrPs of some subjects
have a higher resemblance to a new subject compared
to others, prior selection or prior weighting based on a
suitable similarity criterion could be promising. Also the

incorporation of a confidence score, which could be used to
scale the adaptation rate in the unsupervised scenario, could
be tested.

C. Towards plug-and-play ErrP decoding

On a broader perspective, the ultimate goal are plug-
and-play systems which enable reliable subject-independent
calibration-free ErrP decoding in real world environments.
Here, multiple other factors which go beyond the scope of
this paper have to be considered. Besides system calibration,
also hardware preparation is a time consuming process in
classical EEG systems which can take up to almost one
hour depending on the EEG system. Here, more user friendly
and simplistic systems are highly needed [28]. Furthermore,
not only subject-to-subject variations but also the task de-
pendability of ErrPs [29] limits the transferability between
different settings.

V. CONCLUSION

This work contributes to the development of practical
ErrP decoding which provides a promising method to im-
prove human-computer and human-robot interaction by a
neural evaluation signal. We demonstrated the feasibility
of calibration-free systems with acceptable classification
accuracies of (72.73 ± 5.27)%, which can be initialized
solely from prior subjects. To compensate performance losses
induced by transferring non individualized decoders, super-
vised adaptation towards new subject’s individual feature
characteristics was investigated and results were at least



comparable to the minimal sample calibration scenario. Ac-
cordingly, parameter adaptation of the class-specific means
of a generalized LDA model led to an average performance
increase of +(9.83 ± 3.81)% after 350 trials. Contrary,
unsupervised adaptation had an unlearning effect for most
subjects. Model accuracies dropped on average −(3.85 ±
5.15)% after already 50 trials. Hence, our results demonstrate
that first, instantaneous ErrP classification based on the
dataset tested is feasible from the first trial on with satisfying
accuracy. Second, adaptive models are already practical in
supervised settings but should be applied only with particular
caution in unsupervised settings.
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