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Abstract— Studies have demonstrated the potential of us-
ing error-related potentials (ErrPs), online decoded from the
electroencephalogram (EEG) of a human observer, for robot
skill learning and mediation of co-adaptation in collaborative
human-robot interaction (HRI). While these studies provided
proof-of-concept of this approach as a highly promising avenue
in the field of HRI, a systematic understanding of the dyadic
interacting system (human and machine) remained unexplored.
This research aims to address this gap by proposing a com-
putational model of the human counterpart and simulating
the integrated dyadic system. The model can be employed for
the systematic study of both human behavioral and technical
factors influencing co-adaptation as exemplarily demonstrated
in this paper for hypothetical variations of ErrP-decoder
performance. The obtained findings have practical implications
for future steps along this line of research, for instance to what
extent and how improvements of ErrP-decoder performance
can benefit co-adaptation in ErrP-based HRI. The proposed
computational model enables the prediction of human behavior
in the context of ErrP-based HRI. As such it allows the
simulation of future empirical studies prior to their conductance
and thereby providing a means for accelerating progress along
this line of research in a resource-saving manner.

I. INTRODUCTION

Error-related potentials (ErrPs) are a specific type of
event-related potential (ERP) occurring in response to a
human subject observing an external instance performing
an erroneous or unexpected action and can be robustly
decoded from electroencephalography (EEG) signals with
relatively high accuracies [1], [2]. Previous studies have
demonstrated the usability of ErrPs, online decoded from a
human subject’s ongoing EEG signals, as a feedback signal
for intuitive reinforcement learning of robot skills [3], [4],
[5]. Our recent study [6] extended this line of research
and provided empirical proof-of-concept for the usability of
ErrPs to mediate co-adaptation in human-agent interaction.
Here, subjects performed a game-like interactive task with a
humanoid robot in which they learned to infer goals from the
robot’s gaze behavior, while the robot learned to convey these
goals by adapting its gaze behavior. Importantly, feedback
to the robot for adapting gaze behavior was only provided
via online decoded ErrPs (see Fig. 1). Results demonstrated
successful co-adaptation in the majority of subjects.

While the above mentioned works [3], [4], [5], [6] pro-
vided strong support for the potential of deploying online
decoded ErrPs in the domain of HRI and human-machine
interaction in general, they were largely focused on technical
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Fig. 1. Experimental paradigm: Human subject and robot play a
guessing game in which the robot covertly selects one out of three objects.
Subsequently the robot generates a gaze pattern based on which the subject
has to guess the secret object. The subject’s brain responses are measured
(marked in green) and used as a feedback signal to adapt the robot’s gaze
policy π, while the subject may likewise adapt expectations π′ about the
robot’s gaze behavior. Adapted from Ehrlich & Cheng, 2018 [6].

aspects, and limited in providing a systematic understanding
of the dyadic interacting system (human and machine). After
all, human participants are involved, which vary in their
way of perceiving, interpreting, and coping with the task
and robot stimulus. This may be a reason why in our study
co-adaptation was successfully achieved in some participants
and less so in others [6]. For instance, it remained unclear
to what extent variations of human factors (e.g. learn-
ing/adaptation style) contributed to the joint performance
of the human-agent system. Also, the influence of technical
factors such as online ErrP decoding performance or the type
of agent learning paradigm remained largely unexplained.
Instead of conducting additional empirical studies, these
questions were here addressed by means of a computational
model simulating the integrated dyadic co-adaptive system



(see Fig. 2). The model presented focuses on our recent
empirical HRI study [6]. While research on modeling human
(and animal) decision making has a longstanding history
in neuroscience, cognitive psychology, and game theory,
it appears rather scarce in the domain of brain-computer
interfaces (BCI), with a few works over the last decades,
such as [7]. Also in the domain of HRI, modelling human
behavior appears to be not yet common sense, although
some recent research works demonstrated the potential of
improving HRI by including models emulating human be-
havior (see [8] and [9] for an overview). At the intersection
between HRI and BCI, e.g. in the relatively new field of
ErrP-mediated collaborative HRI, computational modeling of
human behavior appears to be yet entirely unexplored. This
is why this work mainly integrates concepts from previous
works in the domain of cognitive neuroscience. Here, a
series of computational models have been proposed over
the last decades describing human (and animal) decision
making and corresponding neural activities in the context
of effortful and conflicting tasks, including social interaction
(see [10] for an overview). The underlying process is usually
referred to as ’performance monitoring’; the computational
center in the brain is understood to be the anterior cingulate
cortex (ACC) and projecting areas. The majority of the
proposed models employed reinforcement learning based
computational frameworks, in particular temporal-difference
learning in actor-critic architectures (see for instance [11],
[12], [13]). A direct application of the so far proposed models
was challenged by the fact that they were largely instantiated
to account for data based on experimental tasks and stimuli
typical in the domain of neuroscience (e.g. choice-reaction-
time tasks, Stroop task, or gambling tasks). In contrast, our
problem encompasses a relatively complex stimulus (robot)
in a much less constrained task setting. This led us to
decide to develop a model tailored to our problem by taking
inspiration mainly from the Predicted-Response-Outcome
(PRO) model [13], but also others which are acknowledged
in respective sections. An important prerequisite was to allow
flexible extensions of our model to different HRI scenarios
in future work.

This research is divided into four steps: (i) proposition of a
computational model of human decision making and learning
in the context of ErrP-based human-agent co-adaptation, (ii)
fitting the model based on empirical data from our previous
study [6], (iii) embedding the model into an interaction
environment with an agent, and (iv) performing model-based
simulations of the integrated model to elucidate potential
factors influencing co-adaptation. With this, the present work
contributes to research on ErrP-based HRI in two ways:

• Generally, the proposed model provides a platform for
the systematic study of the influence of both human
behavioral and technical factors on ErrP-based co-
adaptation in HRI. Furthermore, it allows the derivation
of testable hypotheses and informed experiment design
of future studies.

• Specifically, this paper reports results from simulations

of varying ErrP-decoder performance. The obtained
findings allow an estimate of the impact of hypothetical
improvements of ErrP-decoding accuracy on human-
agent co-adaptation performance which has practical
implications on future steps along this line of research.

II. COMPUTATIONAL MODEL
A. Experimental paradigm and empirical data

This section briefly recapitulates the experimental setup
and technical implementation of our previous study; for more
detailed information, the reader is referred to [6]. In the
experiment, subjects had to perform a collaborative task
together with a real humanoid robot1 (see Fig. 1), which
required co-adaptation from both sides (human and robot).
The task was designed as a repeated guessing game in
which subjects were asked to infer from the robot’s gaze
behavior which one out of three available objects it has
selected (underlying goal/intention). A single guessing game
(further referred to as trial) started with the robot secretly
deciding for one of the three objects and then proceed with
alternatingly gazing at either of three objects or the subject
in a fixed pace (one gaze transition in 400 ms). Meanwhile
the subject would attempt to infer the correct object from
observing the robot’s ongoing gaze behavior and eventually
take a decision for either of the three target objects. This
means that subjects could continue observing the behaving
robot until they were certain about their decision. Subjects
were asked to indicate their decision in a self-passed fashion
via keypress responses (these were only used as ground truth
for validation). Afterwards, the robot would communicate the
true choice of object to the subject (feedback); time-locked
to the moment of feedback presentation, the subject’s EEG-
based ERP would be classified online into non-error (match)
or error (mismatch) and then administered to the robot for
adapting its current gaze policy. This way, the robot’s gaze
behavior would gradually adapt to subjects’ expectations;
likewise subjects may adapt their expectations, e.g. learn a
gaze pattern ’suggested’ by the robot. A measure for success-
ful co-adaptation was guessing performance, i.e. the subject’s
accuracy in correctly inferring the robot’s chosen object from
its gaze behavior. Sixteen healthy subjects took part in the
experiment (age: 29.2±5.0, 7 females, 9 males). Each one
performed first a calibration session (CALIB) followed by
four co-adaptation sessions (CORL-I-IV). The calibration
session consisted of 150 trials (guessing games) in which
the robot gaze behavior followed a fixed (e.g. non-adaptive)
policy. Data collected during this session was used to derive
subject-specific ErrP decoders. During the following four
closed-loop co-adaptation sessions, each consisting of 50
trials, the previously built ErrP-decoder was employed for
online adaptation of the robot’s gaze policy. In each co-
adaptation session, the gaze policy was (re-)initialized such
that the robot would generate random gaze behavior in the
first trial (starting without prior knowledge).

1The robotic platform chosen for the experiment was the humanoid robot
NAO, which is a commercially available (SoftBank Robotics) 58 cm tall
robot with 21-25 degrees of freedom.



Fig. 2. Model architecture: Overview of proposed architecture of the
human computational model embedded in the interaction process with the
agent. Agent adaptation is performed based on feedback from the evaluation
module of the human computational model. Decoding and transmission of
that feedback signal derived from online decoded EEG-based error-related
potentials is simulated in the BCI block.

B. Proposed model of human decision making and learning

Overview: The proposed model consists of four modules
(see Fig. 2): (1) The perception and inference module trans-
fers observations of the agent’s actions into a belief about the
agent’s goal. (2) The decision making module turns the belief
into an explicit action stating the predicted agent’s goal. As
long as no decision was made, the perception and inference
module continues observing the agent and further updates the
belief. (3) The outcome evaluation module receives the agent
feedback and compares it with the predicted agent’s goal,
based on which it derives a trial outcome and a measure of
expectation violation (further referred as ’prediction error’).
(4) The learning module updates the current knowledge in
the model based on the prediction error and the history of
observed agent actions.

Perception and inference: Pisauro et al. (2017) recently
provided empirical evidence from a combined EEG-fMRI
study that humans accumulate evidence in favour of the
different alternatives before committing to a decision [14]. To
model this evidence accumulation process, we used Bayesian
inference based on the formulation of Behrens et al. in 2007
for describing human behavioral data in a perceptual decision
making task [15]. Bayesian inference prescribes a stan-
dard computation resulting in a posterior belief p(gm|aki,j)
that alternative gm is true given observation aki,j . Here,
gm is the alternative among the set of agent goals g =
{gO1, gO2, gO3}, with M being the number of possible goals
(or target objects: M = 3). aki,j is the observed agent action
from gaze state si to sj in time step k. The agent can be in
four possible gaze states; either gazing at the human or any of
the three target objects S = {sO1, sO2, sO3, sH}. Transitions
are possible from one gaze state to another or staying in the
current state. As observations arrive sequentially over time,
the posterior belief p(gm|a1:ki,j ) can be updated recursively

using all observations a1:ki,j = {a1i,j , ..., aki,j} up to time step
k. Equation (1) describes the computation of the posterior
belief after observation of the first agent action in the current
trial t. Before observing any agent action, the belief about the
agent’s goal is uniform among alternatives, hence the prior
is initialized with p(gm) = 1

3 . The posterior belief is used
as the new prior upon observation of the next robot action
according to equation (2). The likelihoods p(ai,j |gm) are
computed based on internal weights wt−1

i,j,m of the previous
trial t− 1 using the Softmax function according to equation
(3). These weights associate the set of observable actions ai,j
with the goal alternatives gm and as such describe the current
knowledge of the model. Upon start of the experiment, the
weights are initialized uniformly among all possible actions
and goals with w0

i,j,m = 0 for all i, j,m.

p(gm|a1i,j) =
p(a1i,j |gm)p(gm)∑M
m=1 p(a

1
i,j |gm)p(gm)

(1)

p(gm|a1:ki,j ) =
p(aki,j |gm)p(gm|a1:k−1

i,j )∑M
m=1 p(a

k
i,j |gm)p(gm|a1:k−1

i,j )
(2)

p(ai,j |gm) =
ew

t−1
i,j,m∑M

m=1 e
wt−1

i,j,m

(3)

Decision making: The decision making module turns the
current belief p(gm|aki,j) into an explicit action stating the
predicted agent’s goal ĝ. Here, we draw from the formulation
of the PRO-model by Alexander & Brown in 2011 in which
decisions are initiated when the belief exceeds a certain
threshold (decision bound) [13]. However, as mentioned
initially, the PRO-model was largely instantiated based on
choice reaction time tasks, in which subjects were to respond
as quickly as possible. In our case, subjects could freely
decide when to respond; decision time was neither rewarded
nor penalized. This means that on the one hand subjects
could continue observing the agent although they were
already certain about its goal in the hope of collecting more
evidence supporting the current belief. On the other hand,
subjects could respond earlier even though they were not
certain about the agent’s goal, possibly because they lost
confidence that future observations would help consolidate
the current belief. Based on this, it is assumed that subject’s
decisions did not only depend on their belief, but also on
the elapsed time spend on observing the agent. Therefore,
the decision variable β(gm) was realized as a function of the
posterior belief and k. Both variables were linearly combined
according to equation (4) and the influence of k was scaled
with a factor ε (further referred to as timeout parameter).
A decision ĝ = argmaxi β(gm) is initiated whenever the
maximum of β(gm) is equal or greater than the decision
bound Γ otherwise, the next observation is awaited according
to equation (5). The decision bound Γ is recomputed in every
trial t based on a Gaussian random process: Γ ∼ N (µβ , σ

2
β).

β(gm) = p(gm|a1:ki,j ) + εk (4)



ĝ =

{
argmaxm β(gm) if maxm β(gm) ≥ Γ

0 ”wait” otherwise
(5)

Outcome evaluation: The evaluation module validates the
outcome of the trial with regard to the decision about the
predicted agent’s goal ĝ and the feedback about the true
agent’s goal g. First, a binary outcome O is computed
according to equation (6). Second, the prediction error δ
is computed based on the expected outcome and the true
outcome. The expected outcome is the posterior belief at the
moment of which the decision was taken.

O =

{
1 if ĝ = g (non-error)
0 if ĝ 6= g (error)

(6)

δ = O − p(ĝ|a1:ki,j ) =

{
0 ≤ δ ≤ +1 if ĝ = g

−1 ≤ δ ≤ 0 if ĝ 6= g
(7)

Learning: The learning module is responsible for updating
the internal weights after the outcome of the trial has
been evaluated. The learning function used in this model
was based on previous works describing behavioral and
neurophysiological responses in choice reaction time and
gambling tasks as a reinforcement learning process [13],
[10]; particularly based on the formulation of Cohen et al.
in 2007 [16]. In equation (8) the weights of the previous
trial are updated for the next trial by adding the probabilities
of observed actions, weighted by the prediction error δ and
scaled by the learning rate λ. As subjects may react dif-
ferently to erroneous versus correct guesses, we introduced
separate learning rates for success and failure outcomes
(λ(+) and λ(−), respectively). The gating parameter η(ĝ)
is 1 for the chosen target and 0 for all non-chosen targets
according to equation (9). This way, the weights associated
with the chosen target are either positively or negatively
reinforced. After updating, the weights are finally turned into
new likelihoods according to equation (3) and used by the
perception and inference module in the next trial.

wti,j,m =

{
wt−1
i,j,m + η(ĝ)δλ(+) 1

n

∑n
k=1 a

1:k
i,j if O = 1

wt−1
i,j,m + η(ĝ)δλ(−) 1

n

∑n
k=1 a

1:k
i,j if O = 0

(8)

η(gm) =

{
1 for gm = ĝ

0 otherwise
(9)

C. Parameter fitting

The human computational model consists of 7 parameters
(λ(+), λ(−), µβ , σ2

β , ε, TNR, TPR). ErrP-decoder true-
negative and true-positive rates (TNR, TPR) were deter-
mined based on the online decoding performance during the
experimental study. Non-error (match) events were defined
as the negative class, whereas error (mismatch) events were
defined as the positive class. The remaining four model
parameters (λ(+), λ(−), µβ , σ2

β) were fit to each subject

individually. The original experiment data consisted of 16
subjects out of which the data of one subject (s06) had to
be removed due to incomplete marker information. Model
fitting was performed in a sequential two step procedure:
(1) Success and failure learning rates were first fitted using
an optimization procedure, and (2) the decision bound pa-
rameters were retrieved by fitting a Gaussian process to the
distribution of β(ĝ) across trials. Finally, the timeout param-
eter ε turned out to only affect how well the model describes
the experimental data in terms of decision times (number of
observed agent actions until subject decision). Since decision
times were not in the focus of our investigation, the timeout
parameter was empirically set to ε = 0.02 during model
validation (see Section II.D). This resulted in a good match
of simulated and real decision times for all subjects.

Learning rates: The computational model was presented
with the actions performed by the robot in the actual ex-
perimental sessions, starting with the calibration session and
continuing with the co-adaptation runs CORL-I, CORL-II,
and CORL-IV2. The model started with zero knowledge
and continued learning across the entire experiment. The
model’s simulated decisions were compared to the subject’s
real decisions on a single-trial level. The cost function to
be minimized is depicted in equation (10) and computes the
root-mean-squared error between the simulated O1:t

SIM and
the actual subject’s trial outcomes O1:t

DATA across all trials
T (see equation (6)). Outcomes of individual trials were first
smoothed with a 10-trial kernel before being administered to
equation (10), a procedure often used to examine correspon-
dence between model predictions and behavioral selections,
such as in [16]. The cost function was computed separately
for the calibration (150 trials) and the three co-adaptation ses-
sions (each 50 trials) and subsequently averaged to obtain a
single measure of goodness of fit F . Optimization of success
and failure learning rates were performed by minimizing F
in a sequential two-step procedure: (1) by localization of the
global minimum using a 2D grid search across the values
λ(+) = {0, 0.2, ..., 3} and λ(−) = {0, 0.2, ..., 1}, and (2) by
fine-grained optimization using the nonlinear, unconstrained
Nelder-Mead simplex method starting with initial values
resulting from step 1.

F =

√√√√ 1

T

T∑
t=1

(O
1:t

SIM −O
1:t

DATA)2 (10)

Decision bound: Visual inspection of the discrete probabil-
ity distributions of the decision bound across trials revealed
normal distributions in all subjects. Therefore, the variations
of the decision bound were assumed to result from a Gaus-
sian random process reflecting the subject’s uncertainty about
the underlying belief. Based on this, the decision bound
of each subject was modelled individually via a Gaussian
random process (described by µβ and σ2

β) based on trials

2In CORL-III a different protocol was employed which did not capture
ground truth information about subject decisions; therefore it was excluded
from this research.



in which the model’s decision matched the decision of the
subject (ĝSIM = ĝDATA).

Fitting results: Exemplary results of the fitting procedure
for two subjects can be visually inspected in Fig. 3; nu-
merical results for all subjects are provided in Table I.
Overall, simulations match well the experimental data with
an average across subjects goodness of fit of F = 0.19±0.04
(AVG±SD). This translates to an average percentage of
correct predictions of subject decisions of P = 70.4±11.1%
(AVG±SD), with 12 out of 15 subjects resulting in P ≥
65%. These results suggest that the model captured relevant
behavioral effects observed in the human data.

Fig. 3. Qualitative results of goodness of fit: Exemplary results of
two subjects depicting simulated (orange) and real (blue) learning curves
(guessing performance smoothed with a 10-trials kernel for CALIB, CORL-
I, CORL-II, and CORL-IV separately).

D. Integration of the model into the co-learning system

After fitting the free parameters of the computational
model based on experimental data, the model is ready
to be integrated into the co-learning system including the
adaptive robotic agent, and the brain-computer interface
(ErrP-decoder) providing implicit human feedback to the
agent (see Fig. 2). Algorithm 1 describes the perception and
inference, decision making, outcome evaluation, and learning
procedure of the human subject. Algorithm 2 describes the
action generation and learning procedure of the robotic agent.
The simulation of the ErrP-decoder interfacing human and
agent is described in equation (11). The function computes a
reward estimate R̃ for agent policy updating (see algorithm
2) based on the true outcome of the trial and a comparison
of a uniform random number U(0, 100) with the subject’s
individual ErrP-decoder rates. As such, the function emulates
the derivation of a reward from an imprecise ErrP-decoder
decision scaled with the experimental parameters TNR and
TPR.

R̃ =

{
+1 if (O = 1)&(U(0, 100) ≤ TNR); else − 1

−1 if (O = 0)&(U(0, 100) ≤ TPR); else + 1
(11)

TABLE I
MODEL PARAMETERS, SUCCESS / FAILURE LEARNING RATES

(λ(+) , λ(−)), DECISION BOUND (µβ , σ2
β ), AND EXPERIMENTALLY

DETERMINED ONLINE ERRP-DECODER PERFORMANCE (TNR,
TPR [%])3 AND RESULTING GOODNESS OF FIT F , AND

PERCENTAGE OF CORRECT PREDICTIONS OF SUBJECT DECISIONS P

[%].

ID λ(+) λ(−) µβ σ2
β TNR TPR F P

s03 1.5 0.3 1.3 0.2 92.1 69.0 0.11 87.0
s04 0.0 0.2 0.5 0.1 96.8 86.4 0.28 44.0
s05 2.4 0.8 1.0 0.2 62.8 42.2 0.24 66.0
s07 2.2 1.0 0.9 0.2 83.2 81.9 0.19 56.3
s08 2.6 0.8 1.1 0.2 95.5 71.1 0.21 77.3
s09 2.6 0.4 1.2 0.2 90.1 77.0 0.13 84.7
s10 0.2 0.2 0.7 0.1 100.0 1.0 0.16 72.0
s11 2.4 0.4 1.1 0.2 76.5 56.6 0.21 60.7
s12 2.8 0.3 1.3 0.3 95.0 71.6 0.22 74.7
s13 2.6 0.4 1.2 0.2 71.7 63.9 0.21 69.3
s14 0.7 0.3 1.0 0.2 90.6 66.0 0.19 73.7
s15 1.0 0.4 1.0 0.2 90.5 68.2 0.14 82.0
s16 2.0 0.2 1.2 0.3 58.4 81.5 0.15 73.0
s17 2.6 0.4 1.1 0.2 84.3 89.4 0.18 68.7
s18 1.4 0.8 1.0 0.2 89.0 65.2 0.19 67.0

AVG 1.80 0.46 1.04 0.20 85.1 66.1 0.19 70.4
±SD 0.94 0.26 0.22 0.05 12.5 21.6 0.04 11.1

3In the experimental study [6], ErrP-decoder calibration turned out
below chance level in three subjects (s05, s10, s13). This resulted in
TNR and TPR of subject s10 being highly biased during online
ErrP decoding.

Algorithm 1: HUMAN perception and inference, deci-
sion making, outcome evaluation, and learning algorithm

Initialize model weights w0
i,j,m = 0 for all i, j,m

for t← 1 to T do
Initialize prior belief: p(gm) = 1

M
Initialize action count: k = 0
Initialize action history: ai,j = 0 for all i, j
Compute likelihoods: wt−1

i,j,m [equation (3)]
Compute decision bound: Γ ∼ N (µβ , σ

2
β)

while β(gm) < Γ (“subject wait”) do
k ← 1
Observe agent action ak

Update posterior belief based on observed
action ak [equation (2)]

Update decision variable β(gm) [equation (4)]
Update prior belief: p(gm|a1:ki,j )← p(gm|a1:k−1

i,j )
[equations (1) and (2)]

Update observed action history: aki,j ← 1
end
Take decision ĝ [equation (5)]
Observe agent feedback g
Evaluate outcome O [equation (6)]
Compute prediction error δ [equation (7)]
Update weights wti,j,m ← wt−1

i,j,m [equation (8)]
end



Algorithm 2: AGENT action generation and learning
algorithm

Initialize policy: π = 1
4 for all s, a

for t← 1 to T do
Initialize action count: k = 0
Choose initial gaze state si with
s = U{sO1, sO2, sO3, sH}

Choose goal g with g = U{gO1, gO2, gO3}
Initialize gaze transition history: ai,j = 0 for all i, j
while ĝ = 0 (“subject wait”) do

k ← 1
Choose action aj from state si using π(g)
Execute action aj (perform gaze shift), observe

next gaze state sj
Update gaze transition history: aki,j ← 1
si ← sj

end
Present feedback g to subject
Observe reward R̃ from ErrP-decoder
Update policy: π ← π + R̃αAi,j
Truncate policy: π ← clamp(π)10 for all s, a
Normalize policy: π ← π∑

s π

end

E. Validation of the integrated human-agent model

The fitting results (see Section II.C) demonstrated that the
model is capable of sufficiently capturing behavioural effects
observed in the human data. The following section assesses
the validity of the computational model in the context of
large-scale simulations in comparison with the empirical data
observed in the experimental study [6].

To establish equal conditions for the comparison, the origi-
nal experimental protocol was simulated with a large number
of individual experiments. The simulation was focused on
the calibration-session (CALIB) and subsequent first co-
adaptation run (CORL-I) only, as these made up the most
critical parts of the original experiment. The comparison
between simulated and real experimental data was performed
on the study-level, e.g. a single simulated study comprised
all 15 subjects and reported measures of co-adaptation per-
formance averaged across subjects. Four measures of co-
adaptation performance were compared:

• guessing performance: mean guessing performance in
50 trials of CORL averaged across subjects.

• success-rate: ratio of successful4 co-adaptation runs
across subjects CORLs across subjects.

In total 500 studies were simulated; distributions of the
above measures were then compared to the empirical mea-
sures from the original study. The underlying proposition of
this comparison is that the model reflects well the experi-
mental data (and can be trusted at the level of large-scale

4A co-adaptation run consisting of 50 trials was denoted successful if
guessing performance was ≥ 70% in three subsequent segments of 10
trials, p < 7.6 ∗ 10−6, one-sided binomial test with pchance = 1/3.

Fig. 4. Validation of the integrated human-agent model: (a) Distri-
butions of performance measures (guessing performance and success-rate)
across 500 simulated studies including all subjects and (b) a subset of
subjects whose decisions the model could predict with P > 65% . Results
show that empirical measures of the original study (green dashed lines)
are well within the single standard deviation of the simulated data (black
dashed lines) for the two performance measures when considering the subset
of subjects compared to considering all subjects.

simulations) if the empirical measures lie within the single
standard deviation of the simulated measures.

Results are depicted in Fig. 4(a) and show the empirical
performance measures (dashed green line) superimposed on
the distributions of simulated measures. Sufficient consis-
tency between simulated and real data can be observed for
success-rate, but average guessing performance turned out to
be consistently higher than the empirical average guessing
performance (see Fig. 4(a)). This discrepancy could be due
to the fact that the model could not be fitted equally well
to all subjects. Fitting results turned out rather low in a
few subjects (see Table I). A comparison was therefore
performed based only on subjects for which the model could
be well fitted. As a threshold we chose P < 65% which
excluded three out of fifteen subjects (s04, s07, s11). Results,
depicted in Fig. 4(b) show that now empirical measures
(green dashed lines) are well within the single standard
deviation of the simulated data (black dashed lines) for all
four measures. This consistency between the empirical and
simulated data corroborates the above hypothesis that the
observed discrepancy was essentially due to the cases for
which no good fit could be found. However, they also show
the limitations of the model, since the latter can only account
for a subset (approx. 80%) of the participants. Nonetheless,
the consistency observed validates using the model for large
scale simulations, as long as these are based and constrained
to this subset of subjects. All further investigations and
simulations therefore excluded subjects s04, s07, and s11
from the analyses.



Fig. 5. Simulated impact of ErrP-decoder performance: average guessing performance (orange lines) and success-rate (blue lines) for fixed ErrP-
decoder performance across subjects with (a) balanced non-error and error decoding performance, (b) fixed TNR and varying TPR (upper panels), and
vice-versa (lower panels). Error bars represent the single standard deviation of the mean across 50 studies. Results indicate an approx. linear relationship
between ErrP-decoder performance and co-adaptation performance measures. Variations of co-adaptation performance seem to be mainly driven by TNR;
variations of TPR have a negligible effect on co-adaptation performance. Average baseline measures (computed based on individual subject’s TNR and
TPR) are depicted as dashed lines.

III. EFFECT OF VARYING ERRP-DECODER
PERFORMANCE ON CO-ADAPTATION

Higher ErrP-decoder performances are naturally assumed
to yield better co-adaptation performance as the amount of
false feedback provided to the robotic agent is reduced. What
remains unclear is how much any hypothetical improvement
of ErrP-decoder performance would impact the performance
of the entire system (human and agent). The simulations
presented in this subsection were conducted to assess the
extent to which it is worth to try to improve ErrP-decoder
performance.

This investigation was performed by running large sets of
simulated experiments on single subject level, e.g. in each
experiment the model parameters (λ(+), λ(−), µβ , σ2

β , TNR,
TPR) were fixed to one specific subject (in accordance to the
approach used to validate the integrated human-agent model,
see Section II.E). To achieve robust statistics, all simulations
comprised 50 experiments per subject and condition, e.g.
50 simulated studies. This resulted in 600 experiments (12
subjects x 50) per condition, each starting with 150 trials
of simulated CALIB and a single subsequent CORL of
50 trials. Conditions were defined by a hypothetical set of
TNR and TPR which were fixed across subjects (while
no other model parameters were modified). Condition-wise
results were compared to the baseline condition in which the
empirical subject-specific measures of TNR and TPR were
used (see Table I). Measures for quantifying co-adaptation
performance were guessing performance and success-rate in
accordance with the definitions in Section II.E.

Results are depicted in Fig. 5(a) and indicate an approx.
linear relationship between ErrP-decoder performance and
co-adaptation performance measures. The results show, that
even a non-functioning ErrP-decoder (TNR = TPR =

50%) results in an avg. guessing performance of ∼ 48% and
an average success-rate of ∼ 16%. Optimal ErrP-decoder
performance (TNR = TPR = 100%) on the other hand
results in an avg. guessing performance of ∼ 78% and a
success-rate of ∼ 77%. According to the simulation, an over-
all improvement of i.e. 10% in ErrP-decoding performance
results in ∼ 5% improvement of guessing performance and
∼ 10% improvement of success-rate. As hypothesized, the
results reflect that ErrP-decoder performance plays a critical
role, but also suggest that it is not the only factor affecting co-
adaptation. Some level of co-adaptation can even be achieved
with a non-functioning ErrP-decoder (possibly compensated
by the human counterpart) and, more importantly, optimal
ErrP-decoding does not straightforwardly result in optimal
co-adaptation performance. Further results (see Fig. 5(b))
indicate that variations of co-adaptation performance are
mainly driven by variations of TNR (non-error decoding
rate). Variations of TPR (error decoding rate) on the other
hand have a negligible effect on co-adaptation performance.
In this regard, misclassifications of error trials seem to have a
weaker effect on the overall co-learning system (human and
agent) than misclassifications of non-error trials. In summary
this implies that efforts to improve ErrP-decoder perfor-
mance, in particular non-error decoding rates, are generally
worthwhile but supposedly not the main technical factor for
improving co-adaptation performance in the given scenario.

IV. DISCUSSION AND FUTURE WORK

The model-based approach presented in this work allows
the systematic investigation of the integrated human-agent
system in complement to systems engineering efforts and
future empirical studies and as such provides an avenue
towards the design of co-adaptive systems (agent and BCI)



that promote optimal performance in interaction with human
subjects, while aligning to subjects’ individual preferences
and expectations.

The framework to which the model currently applies is
constrained by the following prerequisites and may need
adaptation and refitting of parameters when being applied
to different interaction scenarios: (1) The agent’s behavior
is described by sequences of discrete actions (2). These
sequences encode the agent’s underlying goals/intentions.
(3) These goals are unambiguously disclosed to the human
interaction partner at some point, e.g. explicitly through
feedback or implicitly through a confirmative action con-
cluding the action sequence. (4) The human interaction
partner is intrinsically motivated to infer the agent’s goals
to adapt future behavior, e.g. to optimize joint performance.
Extensions of the model towards a wider range of HRI
scenarios are planned for future works.

Within the constraints of the experimental paradigm, the
model proved useful to investigate the effect of hypothetical
variation of ErrP-decoder performance. Results suggested
that in the given interaction scenario, non-error decoding
rates play the more crucial role than error decoding rates.
This rather surprising observation could be related to sub-
jects’ learning style: subjects seem to have put more empha-
sis on success than failure trials in the process of learning the
agent’s behavior (suggested by higher success- than failure
learning rates, see Table I). In practice this suggests that co-
adaptation performance can be improved by biasing ErrP-
decoders towards emphasizing TNR at the cost reducing
TPR. A similar observation was reported by Llera et al.
in 2011 [17], although in a complementary perspective. In
their work, they explored the usability of ErrPs for online
adaptation of a brain-computer interface (BCI) classifier for
a binary choice task. Both simulations and empirical data
indicated a more negative effect on the adaptation process
resulting from incorrect decoding of ErrPs in response to
the BCI output matching subjects intentions and practically
no influence resulting from incorrect decoding of ErrPs in
response to the BCI output mismatching subjects intentions.
This supports both our results and post-hoc those reported
by Llera et al. in 2011. Whether and to what extent this
observation can be generalized across further interaction
scenarios is subject to future research.

V. CONCLUSIONS

This work proposed a computational model for human
decision making in the context of ErrP-based mediation of
human-agent co-adaptation. The model can be employed
for the simulation-based study of both human behavioral
and technical factors influencing co-adaptation. This was
here exemplarily demonstrated for hypothetical variations of
ErrP-decoder performance. Our findings suggested a more
critical role of non-error decoding rate than error-decoding
rate in the co-adaptation process; an observation which was
found consistent with previous research by others. This
means that, in practice, interaction performance will benefit
in particular from improving the non-error decoder. The

proposed computational model enables the prediction of
human decision making and learning in the context of ErrP-
based neuro-adaptive HRI. As such it allows for simulation
of future empirical studies, and thereby provides a means for
accelerating progress along this line of research in a resource-
saving manner.
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