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Calibration-Free Error-Related Potential Decoding
with Adaptive Subject-Independent Models: A
Comparative Study

Florian M. Schonleitner @, Lukas Otter © ,

Abstract—Error-related potentials (ErrPs) provide an elegant
method to improve human-machine interaction by detecting
incorrect system behavior from the electroencephalogram of a
human operator in real time. In this paper, we focus on adaptive
subject-independent decoding models particularly suitable for
ErrP classification. As individualized decoding models require a
time-consuming calibration phase, such models provide a promis-
ing alternative. Based on an investigation of the characteristics
of inter-subject variations in the signal and feature space, we
evaluate the performance of a decoding model solely trained
on prior data and the effectiveness of adapting this model to
a new subject in a comparative study. Our results show that
such a generalized model can decode ErrPs with an acceptable
average accuracy of 72.7+9.66% and that supervised adaptation
can significantly improve the accuracy of the generalized model
after adaptation with 85 trials by on average +3.8 + 5.1%. We
show that adaptation of subject-independent decoding models is
superior to the traditional calibration procedure. Unsupervised
adaptation only proved effective for some subjects and requires
further attention to be practical for a broader range of sub-
jects. Consequently, our work contributes to the development of
calibration-free ErrP decoding in the broader scope of enhancing
usability of ErrPs for human-machine interaction.

Index Terms—Brain-Computer Interfaces, EEG, Human-
machine interaction, Error-Related Potentials, Adaptive Classifi-
cation

I. INTRODUCTION

HE ongoing development of technological and informa-

tion systems fundamentally changed the way we perceive
and interact with our surroundings. We do not only interact
with other humans, but more frequently also with intelligent
artificial systems, which can be considered as human-computer
(HCI) or human-machine interaction (HMI) [1], [2]. In such
scenarios, the human operator has active control over the
system and hence expects it to react with a distinct response to
his command. If it does not, the system is considered flawed,
which can have fatal consequences in the worst case. Conse-
quently, one fundamental aspect of all intelligent technological
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systems is the correct interpretation and execution of the oper-
ator’s intention. Hence, a much desired ability is the evaluation
of system behavior in an instantaneous and seamless manner.
As error perception and evaluation are essential abilities of
all humans, characteristic changes in the neurophysiological
activity are measurable in the prefrontal cortex directly after
observing wrong responses of an interaction partner [3], [4].
Such error-related potentials (ErrPs) provide an elegant way
to detect incorrect system behavior from the electroencephalo-
gram (EEG) of a human operator. Recently, several studies
have shown that such passive brain-computer interfaces (BCIs)
can monitor a subject’s neurophysiological behavior to decode
ErrPs in real-time. Thus, this neuronal evaluation signal can
be used to correct wrong system behavior [5]-[10], for label-
free adaptation [11] as well as teaching robotic skills [12]-[14]
and co-adapting robot behavior during human-robot interaction
[15], [16]. Nonetheless, the usability of ErrPs is impeded
by the non-stationarity of the EEG signals [17]-[19], which
leads to variations in the signal of different subjects. As this
also reflects in different feature distributions [20]-[22], simply
transferring a pre-trained decoding model to classify data from
a new person or data obtained from a different experimental
context [8] is accompanied by grave performance losses. In
addition, generating subject-specific decoding models involves
a time consuming initialization phase as substantial training
data is required for model calibration. However, for practical
subject-independent decoders both approaches are impractical
as the only information available would be labeled data from
prior subjects and a few unlabeled trials from a new subject.
Fortunately, information transfer and adaptive classification
methods provide alternative techniques: by combining both
methods it is possible to generate decoders which adapt to
the subject-specific characteristics without the need for a time
consuming initialization phase [11], [23]-[27].

Iturrate et al., 2011, replaced the calibration phase in ErrP
classification by inter-subject information transfer [26]. They
started classification in an early stage with a decoding model
trained on pooled data of multiple subjects. Afterwards, they
adapted the model towards a different subject by incorporating
new labeled trials. This approach also proved useful for motor
imagery classification. Lotte and Guan, 2009 [28] and Vidaurre
et al., 2011 [25], applied a similar approach which also allows
unsupervised adaptation as no labeled information from new
subjects is needed. However, their approach is not easily
transferable to other paradigms as it makes some assumption
about the underlying nature of inter-subject variations, which
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Fig. 1. Trial design of the experimental protocol. Adapted from [7] with
permission

are not given by ErrPs.

Building upon our preceding study [29], we supplement the
related work by analyzing the capabilities and limitations
of subject-independent adaptive decoding models similar to
the ones used in [25], [26], [28], [30] in the context of
ErrP classification. Thereby, we start by analyzing the inter-
subject inconsistencies of ErrP characteristics in the signal and
feature space. Based on this analysis we assess the feasibility
of reusing data from other subjects, and then evaluate the
effectiveness of a suitable model adaptation algorithm. In
result, we demonstrate that model initialization from prior
data combined with supervised adaptation is superior to tra-
ditional BCI calibration. First, reusing prior data for model
initialization is more efficient as it allows decoding of ErrPs
from the first trial on which is not possible with a traditional
calibration procedure. Second, supervised model adaptation
proved more effective than a minimal sample calibration and
led to a consistently higher decoding performance. Although
unsupervised adaptation did not lead to a performance increase
for most subjects, it is promising especially in the case of a
high accuracy of the initial model.

II. MATERIAL AND METHODS
A. Experimental data

We based our study on an in-house recorded dataset! which
contains EEG recordings of twelve subjects®. This allowed us
to simulate a BCI used by different subjects with a sufficient
amount of prior data. A detailed explanation of the experiment
is available in [8]. In short, the experimental task consisted of
a computer-based interaction scenario in which participants
were asked to send directional commands depending on a
visual stimulus (see Figure 1) and subsequently perceived the
movement of a cursor as feedback. Participants indicated their
direction of choice by pressing left or right arrow-keys on
a keyboard with one finger of the right or left hand. The
elicitation of error-related potentials in the subject’s EEG was
realized by wrong cursor responses which were introduced in
a pseudo-randomized fashion. Previous analysis of this dataset
showed that within-subject single-trial classification of ErrPs
is possible with accuracies of around 90% average across
subjects [8]. EEG signals were recorded with a Brain Prod-

ucts actiCHamp amplifier with 32 active electrodes, arranged
'Dataset with detailed description available at
stefan-ehrlich/dataset- ErrP-HRI
’the data of one subject was removed from the dataset due to technical
problems during data acquisition

https://github.com/

according to the international 10-20 system. Three channels
were used for post-hoc ocular artifact correction and all leads
were referenced with respect to the average of the left and
right mastoids (TP9 and TP10). With this setup, 500 trials
per subject were recorded of which approximately 175 (35%)
are wrong cursor responses. Data preprocessing consisted
of band-pass filtering, artifact correction, re-referencing, and
downsampling in accordance to the procedure described in
[7]. Furthermore, the EEG data of each trial was segmented
in a window of -200ms to 1000ms time locked to the onset of
the cursor movement. After preprocessing, temporal features
were extracted similar to the procedure described in [7] by
calculating the arithmetic mean of the signal in ten partially
overlapping time windows from Oms to 800ms after feedback
presentation. In total, 270 temporal features (27 channels x 10
windows) were extracted for every trial of every subject in the
following windows: 0-100ms, 100-200ms, 150-250ms, 200-
300ms, 250-350ms, 300-400ms, 400-500ms, 450-550ms, 500-
600ms, 600-800ms. Note that we altered the original feature
extraction in [7] by adding an additional window from 450ms
to 550ms to better capture the late negativity around 400ms
(see Figure 2).

B. Analysis of error-related potentials characteristics

To find a suitable adaptation algorithm, a systematic analysis
of the characteristics of variations between different subjects’
ErrPs was performed. We evaluated and compared individual
ErrPs in the signal space and the class-specific feature distri-
butions after feature extraction and set the focus on gaining
insight on inter-subject signal- and feature-shifts which must
be considered by the adaptation algorithm. For the signal
analysis, we computed the average of all error and non-error
trials for each subject as well as the grand average of the signal
by computing the mean of all trials and subjects. The results
are visualized as time-series and topographic plots in Figure 2.
Inter-subject inconsistencies between features were analyzed
on a) the bivariate feature subspace spanned by the two most
discriminative features and b) the distance between the means
of the class-specific multivariate probability distributions of
each subject.

a) Fisher Score Projections: For feature analysis we
performed a dimensionality reduction based on the Fisher
score to focus our analysis on the features which are most
relevant for classification. This measure of linear separability
of distributions is based on the within class scatter S,, and the
between class scatter S, and finds an optimal transforming axis
w which maximizes Fisher score J(w) of a feature.

K
Sp = ZP(Cz‘)(Hi — ) — )" (D
i=1
K
Suw =Y _p(c)Elly — p)(y — 1) lei] 2
i=1
_|wTS,w|

Here, K is the number of classes, which reduces to two for
binary classification, p(c;) denotes the prior of the class ¢;,
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p; and i are the class-specific and global mean respectively.
We particularly chose the Fisher score as a metric as LDA
classifiers, which were used for single-trial classification, are
based on the same basic principle. To find the most relevant
features, the Fisher score as defined in (3) was calculated and
standardized for each feature and every subject individually
and the two features with the highest average scores were
chosen as the most discriminative features across all subjects.

b) Class-specific distance between the means: Besides
the two-dimensional Fisher projection we also analyzed fea-
ture shifts between subjects in a quantitative manner taking
into consideration all feature dimensions. To do so, we cal-
culated the summed absolute distance between the means for
each subject combination Si||.S,, where k # m.

270

S Sm

Hi(Skl[Sm) = > | iy — py
F=1

“4)

f denotes the feature (which in total sum up to 270), ¢ denotes
the class (error and non-error), Sy and 5,,, denote the subjects
and p; ¢ is the class-specific mean of the subject. As H; is
symmetric, and thus H;(Sk||Sm) = Hi(Sm||Sk), repeated
combinations were excluded from the analysis. We particularly
focused on changes in the mean because we expect them to be
the main source of inter-subject variations while the covariance
appears to be rather stable across subjects (see also Figure
3). Furthermore, adaptation of only the mean was reported to
sufficiently capture inter-subject variations in a MI task [25]
which is in line with a preliminary study from our side.

C. Single trial classification

Due to its simplicity and effectiveness, linear discriminant
analysis (LDA) is a widely used classification method for
classifying EEG signals [31]. ErrP decoding is a binary
classification problem. Hence, all trials can be split into the
two classes C1 (error), C'2 (non-error) and the class-wise
Gaussian distributions with the parameters g, pt, as class-
wise means and X as the shared covariance, which is assumed
to be equal for both classes. For covariance estimation, a
shrinkage approach with optimal shrinkage intensity was used
[32]. Single trials were classified by a LDA classifier which
computes a decision boundary as follows:

D(x) = [b,w”] 1] (5)
X
w=Y""(p2 — p1) (6)
b=-w'fi (7)
1
u= 5(#1-’-#2) ®)

Note that this description of an LDA model assumes equal
prior probabilities of each class during training which was
ensured by repeated random undersampling of the majority
class (see also Section II-E). New trials are classified by
computing the distance D(x) of the feature vector to the

separating hyperplane. Hence, a class decision is made based
on the sign of D(x):

xe 1 %f D(x) <0 ©)
Cy if D(X) >0

D. Model adaptation

For every new trial x;, classifier adaptation was imple-
mented by adjusting the parameter g, of the class-specific
probability distributions by Equation (10). This formula was
inspired by other works such as [25], [28], [30] where a similar
adaptation approach was used.

NG
pi(t+1) = (1—)\)#i(t)+m > @ (10)
=1

A is the update parameter which determines the rate of
adaptation and N (t) is the total number of available trials
from the current subject.

This adaptation approach is particularly suitable for ErrP de-
coding mainly because of three reasons: first, class-wise mean
adaptation was chosen instead of pooled mean adaptation as
the previous feature analysis revealed the class dependency of
variations in the individual subject’s data (see Section III-A).
Second, adapting only the mean values but not the covariance
seems sufficient as additional covariance adaptation did not
lead to a noteworthy performance increase in our experiments.
This was also observed by other groups where adapting only
the mean could sufficiently capture inter-subject variations in
a MI experiment [25]. Further, when performing covariance
adaptation n(n + 1)/2 covariance matrix entries need to be
estimated from a n-sized input vector, which is - especially
in the case of limited subject data - highly unreliable. By
restricting to mean adaptation, this ratio reduces to a linear
n to n relation. Third, when comparing single trial adaptation
to trial average adaptation, the latter approach has the benefit
of scaling the relevance of new trials with the usage time of
the system. The fact that this approach neglects within-session
adaptation is less relevant as ErrPs appear to be stable over
time [33], [34].

E. Evaluation scenarios

For a systematic evaluation of the proposed adaptive LDA
model, we will compare five scenarios. These scenarios use a
different amount of information from new and prior subjects.

1) 10-fold cross validation (CV): To test the performance
of the proposed LDA classifier, 10-fold cross validation was
performed separately for every subject. Cross-validation is
a commonly used evaluation scenario in which the data is
repeatedly divided into a larger training set and a smaller
evaluation set which comprise different portions of the data for
each repetition. We performed ten repetitions (hence 10-fold
cross validation) in each of which all trials of one subject were
divided randomly in a 10%-90% proportion for the testing and
training set respectively. As our LDA description requires a
balanced training set, random undersampling of the majority
class was performed ten times for each fold and the results of
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this ten individual undersampling-repetitions were averaged
to compensate effects of differently balanced training sets.
This ensures that each trial in the training set has a high
probability of being used at least once for model training.
Finally, the results of each fold were averaged to obtain the
final evaluation metric for the CV scenario. Note that the LDA
models in this scenario were tested on the same subject as they
were trained on, though on different trials. Hence, this scenario
investigates subject-specific decoding models which accuracies
can be interpreted as the optimal decoding performance of the
chosen classification model.

2) Minimal sample calibration (MSC): This scenario im-
plements the traditional training of a subject-specific classifier
with minimal samples. The calibration set consists of balanced
calibration trials from the current subject only and increases
over time as more trials get available. Data balancing was per-
formed just like in the CV scenario. As the label information
is needed for (re-)training and at least some labeled data is
necessary for classifier training, this scenario is only possible
in a supervised manner and cannot be used to classify the first
trials of the subject. In our scenario, we used at least 50 trials
from the current subject for training and then retrained the
model by adding always one consecutive trial to the training
set. This was repeated until all but the last 100 trials, which
were used for testing, were incorporated in the training set.
The main difference to the CV scenario is the reduced number
of trials used for model training which would have a positive
effect on the calibration time.

3) Generalized model (GM): A generalized model [35]-
[38] can be built without any information of the current subject
by training a LDA on a balanced training set which contains all
prior data from other subjects. To compensate effects induced
by random undersampling, 100 LDA models were trained on
separately balanced training sets and their parameters were
averaged for the final generalized model. We evaluated the
model’s performance as described in Section II-F. When
applied to new subjects, instantaneous ErrP decoding® is
feasible, though with presumably lower classification accuracy
as no individual feature characteristics are captured in the
generalized model.

4) Supervised adaptation (SA): To maximize the decoding
performance of the generalized model, adaptation to a new
subject was implemented according to Equation (10). If class
labels for new trials are available, supervised adaptation can
be applied by using the label information to determine which
class should be adapted.

5) Unsupervised adaptation (UA): If labeled trials are not
available, only unsupervised adaptation is feasible. A label
for each new trial can be predicted by the adapted generalized
model LD Ag(t) (adapted with all available subject trials at
time t). Based on this label, the class parameters are adapted
according to Equation (10). Provided that the adaptation rate
and the generalized model can be initialized reasonably, this
scenario would be suitable for instantaneous adaptive online
ErrP decoding without the need of any label information

3instantaneous ErrP decoding in this context should be understood in the
sense that a meaningful decoding model is available without calibration from
the beginning on.

TABLE I
OPTIMAL AND INITIALIZED ADAPTATION RATES Aoptimal AND Ainit FOR
EACH SUBJECT AND ADAPTATION SCENARIO

Si g;ﬁimal )‘?’rﬁt gp?imul gzx?t
1 0.018 0.014 0.001 0.007
2 0.019 0.014 0.009 0.002
3 0.002 0.018 0.002 0.007
4 0.041 0.014 0.002 0.007
5 0.011 0.018 0.012 0.002
6 0.014 0.018 0.007 0.002
7 0.042 0.014 0.044 0.002
8 0.009 0.018 0.013 0.002
9 0.018 0.014 0.012 0.002
10 0.001 0.018 0.001 0.007
11 0.008 0.018 0.001 0.007
12 0.042 0.014 0.001 0.007

from a new subject.

F. Evaluation and reporting of results

The testing set for the MSC, the GM, the SA and the
UA scenarios consisted of the last 100 trials of the current
subject. The testing set for the CV scenario consisted of
randomly chosen 10% of the subjects’ trials which were not
part of the training set. This random selection was repeated
10 times and the obtained classification accuracies of each
individual evaluation step were averaged. As only the train-
ing but not the testing set is balanced, the performance of
the different scenarios will be evaluated by comparing the
balanced accuracies bACC of the LDA classifiers, which is
the average of the true positive and true negative rate. The
optimal adaptation parameter A\ is not known a priori, so
we performed a grid-search by varying the adaptation rate
between 0.001 to 0.05 in 0.001 steps. The rate which led to
the highest accumulated bACC' increase for each subject and
scenario was calculated post-hoc and is termed A,ptimar. The
median of all individual optimal adaptation rates, excluding
the subject used for evaluation, was used to initialize the
adaptation process and is termed \;,,;+. Table I lists the optimal
and initialized supervised and unsupervised adaptation rates
Aoptimal and Ajp;; for each subject. For model visualization,
we implemented a two-dimensional projection of the class-
specific distributions representing the distance of each trial to
the decision hyperplanes of the GM and CV models. This
projection method was inspired by [39] and slightly adapted
to our purposes. Specifically, the x-axis and y-axis of Figure
3 are one-dimensional projections of the respective LDA de-
cision hyperplanes and the x- and y-coordinates represent the
distance D(x) as in Equation (5) to those hyperplanes. Thus,
this representation allows the interpretation of the models’
performances and, more importantly, their differences in an
informative graphical representation.

III. RESULTS
A. Signal and feature analysis

Figure 2 shows the grand average of all subjects and trials
of class error (black) and the difference wave of classes error

2576-3202 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 03,2020 at 15:12:23 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMRB.2020.3012436, IEEE

Transactions on Medical Robotics and Bionics

IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, VOL. XXX, NO. XXX, XXX 2020 5
‘ . Grand alvera‘gelfor cha‘nnel Cf . ‘ @ (@\/ \Xz‘ 4
——— Difference 3
E 2 = 2N =
rror @ (O )
- @
. 10 2
o 0O O,
@ : I
S CNE
3
A\ )
@ @® O |
200 100 0 100 200 300 400 500 600 700 800 N200 P300
time from feedback presentation [ms]

Fig. 2. Left: Grand average of EEG signal for channel Cz for error trials (black) and the difference between error and non-error trials (red). The dashed lines
show the EEG signal of every individual subject averaged over all error-trials. Right: topographic plots of the averaged EEG signal between a time window
of 187 4+ 50 ms (N200) and 277 4= 50 ms (P300) for each subject (subject order from top to bottom).
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Fig. 3. Bivariate class-specific feature distributions for the two most dis-
criminative features (Fg67250 and FQC()f)fsoo) according to the normalized
averaged Fisher scores for each subject. The confidence ellipses of the first
standard deviation and their centers are plotted separately for error and non-
error trials.

minus non-error (red) for channel Cz (left) and topographic
plots for each subject averaged between 185 % 50 ms (N200)
and 260£50 ms (P300) after feedback presentation (right). The
channel Cz was chosen since neuropyhsiological activity of
error processing manifests most prominently in central regions
[40] observable between 100 - 800 ms after feedback presenta-
tion. The two most significant deflections around 180 ms and
250 ms are commonly termed N200 and P300 components
respectively [40], [41]. The two most significant deflections
around 180 ms and 250 ms are commonly termed N200 and
P300 components [40], [41]. Although both components are
consistently observable across all subjects in our dataset, their

-3
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Error
non-Error

12
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700

0

Fig. 4. Summed absolute distance H;(Sk||Sm ) between the class-specific
mean values for each subject combination m # k, separately for each class <.
The number of bins for each class is 15 and the solid lines show a Gaussian
kernel probability distribution fit. As H; is symmetric (see Equation (4)),
repeated combinations were removed.

amplitude and timing varies by on average —3.06 £ 3.07uV
(N200) and +4.53 + 1.59uV (P300) and by on average
187415 ms (N200) and 277437 ms (P300) between subjects®.
This suggests that the N200 potential is temporally more stable
than the P300 potential which is also in line with observations
by other research groups [36], [42].

Comparing the bivariate distributions of error and non-error
trials (Figure 3) reveals a clear class-dependency of inter-
subject variations. On average, non-error trials seem to be
affected primarily by linear shifts in the mean which show

4This comparison is based on the single value of the highest/lowest
amplitude and the corresponding timepoint

2576-3202 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 03,2020 at 15:12:23 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMRB.2020.3012436, IEEE

Transactions on Medical Robotics and Bionics

IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, VOL. XXX, NO. XXX, XXX 2020 6

class-specific feature distribution projections
15 e

subject-specific LDA model (CV)
o
'
!
!
!
!
!
!

10 F non-error centers
u+o confidence ellipses
®  error centers

p+o confidence ellipses

-15 -

generalized LDA model (GM)

Fig. 5. Two-dimensional projection of the class-specific distributions repre-
senting the distance to the decision hyperplanes of the GM and CV models.
The x- and y-axis are one dimensional projections of the LDA decision
hyperplanes of the two models. The distance D(z) of each data sample to
those hyperplanes is shown on the x- and y-coordinates (see equation 5 for
the definition of D(z).

a strong positive correlation (r = 0.92) between both feature
dimensions. Contrary, error trials exhibit an almost random
behavior of variations and show no clear correlation. The
covariance seems to be less affected by inter-subject varia-
tions and appears to be rather stable. To further investigate
the assumption of class-dependent feature variations between
subjects in a more quantitative manner, we computed the
distance H; between different subject as described in Equation
(4). Figure 4 shows the histogram and Gaussian kernel prob-
ability distribution fits for the obtained distances for all non-
repeating and non-equal subject combinations for both classes
independently. In line with the two-dimensional projections
in Figure 3, error trials exhibit a higher inter-subject dis-
tance and also a higher variance of the distance. Specifically,
Hgpror = 306.7 £ 73.8 and H,on—Error = 218.0 & 49.4.
Finally, the higher variability of the error class, which was
also observed by other researchers [26], strengthens the as-
sumption of a class-dependency of inter-subject variations.
As a consequence for the adaptation algorithm, adaptation
of class-specific parameters is indispensable as adaptation
of class-unspecific parameters cannot capture class-dependent
variations. This is also in line with in-house preliminary
analysis where adaptation of only class-unspecific parameters
could not improve the accuracies of the GM models.

B. Comparing subject dependent and subject independent
models

Besides the decodability of ErrPs in general, a prerequisite
for calibration-free systems is the feasibility of model
initialization. Here, it is practical to rely on data which
is available prior to system usage as we did in the GM
scenario. Comparing the averaged balanced accuracies of this
scenario to the CV scenario (see Table II), we can report
three main results. First, in the case of optimal individualized

decoding models, reliable ErrP classification is possible with
an across subject average bACC of 88.29 + 3.93% (CV
scenario). Second, reusing data of prior subjects is practicable
to generate a generalized model which resulted in acceptable
accuracies of 72.74+9.66% (GM scenario). Third, as expected,
we observed a significant (two-sided Wilcoxon signed rank
test, p < 0.05) performance decrease between the accuracies
of the individualized (CV scenario) and generalized (GM
scenario) models of on average —(15.56 + 8.65)%. Hence,
model initialization without any data from the current subject
is feasible but not optimal.

Figure 5 provides further insights into the differences between
the GM and CV models of each subject by visualizing the
models’ decision boundaries in a two-dimensional projection.
It can be clearly seen that the subject-specific CV models
obtain a much higher class-separability than the subject-
independent GM models. This is in particular the case
for subject Sy where especially error trials are largely
missclassified by the GM model, leading to a low bACC of
this model of only 57.90% (see also Figure 9 and Table II).

C. Effectiveness of model adaptation

To further increase the performance of the generalized
model, we analyzed the effectiveness of model adaptation as
described in Section II-D. Therefore, we defined five segments
of 70 trials each in which we compared the difference between
the static GM scenario and the adaptive SA and UA scenarios
(Figure 6, right). The maximum number of available trials
for adaptation is restricted to 350 because the last 100 trials
comprised the testing set and hence could not be used for
adaptation. Hence, Figure 6 indicates the performance increase
due to adaptation with regard to the amount of data acquired
from a new subject. Looking at the adaptation performance,
the beneficial effect of supervised adaptation is clearly visi-
ble: the balanced accuracies of the SA scenario (green) are
significantly (two-sided Wilcoxon signed rank test, p < 0.05
, n = 12) greater than the ones of the GM (cyan) after 83
trials and also slightly greater than the MSC scenario (blue).
During the first 50 trials, adaptation could not improve the
GM scenario but accuracies were approaching to on average
83.04+6.92% in the later stage for supervised adaptation (Fig-
ure 6, left). Thus, a high classification accuracy only slightly
below the CV scenario is established after a certain amount
of trials. Unsupervised adaptation as in the UA scenario (red
curves in plot) behaves differently and leads to an unlearning
effect: the accuracies drop noteworthy below the ones of the
static GM scenario within the first 50 trials and converge to
67.07 +13.47%, which is on average —(5.65 £ 7.79)% below
the GM scenario accuracy.

Besides the pooled balanced accuracy, Figure 9 shows the
bACC for the different scenarios for every individual subject.
In line with results depicted in Figure 6, the bACCs of
the supervised adaptation (green) are above the ones of the
GM model for all subjects, except S1g. For this specific
subject, adaptation is not practical as the GM model already
outperforms the CV model. On the contrary, the performance
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Fig. 6. Left: Averaged balanced classification accuracies for the CV (upper dashed black line), the MSC (dashed blue line), the GM (lower dashed black
line), the SA (green solid line) and the UA (red solid line) scenario in a 95% confidence interval plot. Right: difference in model bACC' due to adaptation
in blocks of 70 trials; AbACCgsa = bACCga — bACCgys (green) and AbACCy 4 = bACCya — bACCgyy (red). On each box, the median (central
mark), the 25¢" and 75t" percentiles (bottom and top edges) and the most extreme data points not considered as outliers are indicated. All outliers (n=3) are
represented by dots. Boxes significantly different from zero are marked with a black star on top. Note: Figures are better readable when printed in color.

TABLE II
BALANCED ACCURACIES FOR GM AND CV MODELS
S \ 1 2 3 4 5 6 7 8 9 10 11 12
CV [%] 83.60 87.89 9424 8454 84.16 9390 8543 93.61 91.67 8790 84.15 88.35
GM [%] 64.38 68.84 90.24 6875 72,66 77.18 70.57 78.18 5790 90.99 62.81 70.20
ALACC [%] | 19.21 19.05 4.01 1579 1150 16.72 1486 1543 3377 -3.09 2135 18.15

of the UA scenario is not as homogeneous as the SA scenario:
while unsupervised adaptation indeed improves the accuracy
of the GM model for some subjects (S3,S4,S5,Ss), it is
detrimental for others (S, .57, S10,511,512). As the only
difference between both scenarios is the reliability of the label
of new subject trials - which is 100% in the SA scenario
and the current model accuracy in the UA scenario - we
analyzed the relation between the model accuracy and the
performance increase when adapting the model. Figure 7
illustrates the performance difference of the supervised SA and
unsupervised UA scenario. Depending on the current model
accuracy bACCyo4ei(t) in the UA scenario, we computed the
difference in the adaptation performance AbACCqqpi(t) to
the SA scenario. One can observe that the difference between
SA and UA scenario as well as the unlearning effect is
especially prominent if the initial model accuracy is low (red
region). On the contrary, unsupervised adaptation increased the
GM performance for three out of four® subjects whose initial
GM accuracy is above the mean GM accuracy of 72.73%
(green region) and supervised adaptation is applicable.

To better understand the relationship between the GM model
accuracy, the update parameter \ and the unsupervised adap-
tation performance, we performed a grid analysis in which we
varied A between 0.005-0.05 in steps of 0.005 and simulated
a GM model misclassification rate (MCR) between 0-45% in

Sfor subject S1o adaptation with any of the presented methods is not
helpful as the GM scenario already outperforms the CV scenario; for subject
Se unsupervised adaptation with the first 70 trials is superior to supervised
adaptation but also not helpful on the long term

steps of 5%. For the MCR simulation we randomly switched
the labels of n adaptation trials and performed (semi-) unsu-
pervised model adaptation as in the UA scenario. The overall
balanced accuracy increase to the GM model was defined by
the area under the curve (AUC) of the UA model accuracy
minus the GM model accuracy. Adaptation was repeated 10
times and results were averaged to minimize a dependency on
the random label switching. It turns out that the adaptation
performance in the grid analysis is mainly dependent on the
model accuracy (see Figure 8) which strengthens our assump-
tion of a minimal GM model accuracy required for successful
unsupervised adaptation. Concretely, the grid search analysis
suggests a minimal model accuracy of approximately 75% for
which model adaptation could increase the overall classifica-
tion accuracy (see red intersection in Figure 8). Interestingly,
this value almost matches the average GM model accuracy of
72.73% (see Figure 7). Furthermore, the update parameter A
is negatively correlated with the model accuracy: the lower
the accuracy, the higher the influence of A. Unsupervised
adaptation with a more accurate model is less dependent on
the adaptation parameter, at least in the tested region.

IV. DISCUSSION

A. Error-related potential variability and the consequences for
classification

Based on the signal and feature analysis, we cannot confirm
the existence of stable spatio-temporal features which would
dispense the need for model adaptation. Although the N200
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Fig. 7. Comparison of SA and UA scenario with regard to model accuracy and
adaptation performance. AbACCygqpt(t) = bACCy A(t) — bACCs4(t)
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Note: Figures are better readable when printed in color
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Fig. 8. Results of the grid analysis: the plot shows the color coded perfor-
mance increase, averaged over all subjects, due to simulated unsupervised
adaptation with respect to the GM model missclassification rate (MCR) and
the update parameter A. GM MCR was simulated by random label switching
with a probability p = MCR. The performance increase is defined as the
area under the curve (AUC) of the UA model minus the GM model. The
red line separates positive and negative adaptation by the boundary of zero
AAUC.

components seem less variant in their timing, they do not
appear so in terms of amplitudes which are inconsistent across
subjects. Hence, we decided against restricting the feature
space to only one of the observed potentials as both exhibit
noteworthy fluctuations between subjects. Furthermore, N200
and P300 components represent context relevant informa-
tion as they are elicited only in erroneous trials. Hence,
both components are distinct characteristics of error-trials
and extracting corresponding features can help to increase
the class-separability in the classification process. This ul-
timately also increases the classification performance if the
subject-specific characteristics of the potentials are represented
correctly. Wrongly estimated subject-specific characteristics
however will lead to a decreased classification performance.
Nonetheless, such subject-unspecific decoding models can be
modified by appropriate model adaptation to better match the
subject-specific signal characteristics as shown in our study
and others [26], [39].

B. Model generalization

Within the context of inter-subject information transfer,
an ideal generalized decoding model should capture subject-
independent feature characteristics and neglect subject-specific
information which could impede transferability [27]. However,
each subject’s ErrPs have an individual timing, amplitude
and spatial distribution. Thus, the proportion of subject-
specific and therefore noisy feature information is fairly
high in the generalized model. In contrast, the CV scenario
is unaffected by these subject-to-subject variations which
explains the higher average performances of this scenario.
For the same reason we suspect that the use of simplistic
decoding models with a reduced number of parameters is
preferable when constructing a generalized model as they
are less prone to overfitting unreliable subject-independent
feature characteristics from the shared training-set. This has
also been suggested by other researchers [43]. Furthermore,
simplistic models can be individualized efficiently as only
few parameters need to be adapted. In line with the results
reported in [26] we also suggest that a higher number of
subjects leads to a better transferability and performance
of the generalized model. This is based on the assumption
that an increased number of subjects in the training set
minimizes the risk of modeling subject-specific feature
characteristics while at the same time enhances the modeling
of subject-independent characteristics.

C. Adaptation

Regarding the adaptation, it is important to explain the
lower performance of the UA scenario compared to its
supervised counterpart. One obvious reason is the partially
unreliable label information of new trials. While in the SA
scenario, parameters of always the correct class are adapted,
parameter adaptation in the UA scenario is correct only with
the current accuracy of the decoder. This gives rise to the
assumption of a minimal GM model accuracy needed for the
UA approach to be practicable, which indeed is in line with

2576-3202 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 03,2020 at 15:12:23 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMRB.2020.3012436, IEEE
Transactions on Medical Robotics and Bionics

IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, VOL. XXX, NO. XXX, XXX 2020 9
Subject 1 Subject 2 Subject 3 Subject 4
100 100 100 100
S S
Q Q
Q Q
< <
0 Q0
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
trials trials trials trials
Subject 5 Subject 6 Subject 7 Subject 8
100 100 100 100
%) O O o 80
Q Q Q Q
<< < << <
o o Qa a 60
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
trials trials trials trials
Subject 10 Subject 11 Subject 12
100 ubiec 100 upiee 100 ubiec
e W =80 = 80 N s e
I X W N >4
o) S 60 o
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
trials trials trials trials

Fig. 9.

Individual balanced classification accuracies for the CV (black), the MSC (blue), the GM (orange), the SA (green) and UA (red) scenarios. The

grey dotted curves are the results obtained by varying the adaptation rate between the range covered by the grid search approach (0.001 - 0.050) for the UA

scenario. Note: Figures are better readable when printed in color.

our findings. Consequently, increasing the generalized model
accuracy is of high interest as this does not only improve
the classification accuracy in an early stage but also the
unsupervised adaptation performance. As we did not take into
account that ErrPs of some subjects have a higher resemblance
to a new subject compared to others, prior selection or prior
weighting based on a suitable similarity criterion as done
by other researchers [20]-[22], [28], [44], [45] form a key
part of our future work. Furthermore, extending the proposed
adaptation algorithm by incorporating the label certainty
[24], [46], which could be used to scale the adaptation rate
in the unsupervised scenario, will also be investigated in
future work. Finally, in the case of unsupervised adaptation,
also other adaptation algorithms which are less dependent
on the generic model accuracy should be considered [47], [48].

D. Co-adaptation

In this paper we analyzed adaptive classification models.
However, for any human-machine interaction (HMI) which
involves adaptive systems, one also should consider bidirec-
tional adaptation in which not only the system adapts to its
user, but also the user adapts to the system. This process
of co-adaptation has recently gained special attention from
the BCI community [16], [30], [43], [49], [50] and ErrPs
may constitute a promising complementary feedback signal for
guiding adaptation towards human preferences in collaborative
HMI [15].
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E. Towards plug-and-play ErrP decoding

On a broader perspective, the ultimate goal are plug-
and-play systems which enable reliable subject-independent
calibration-free ErrP decoding in real world environments.
Here, multiple other factors which go beyond the scope of this
paper have to be considered. Besides system calibration, also
hardware preparation is a time consuming process in classical
EEG systems which can take up to almost one hour depending
on the EEG system. Here, more user friendly and simplis-
tic systems are highly needed [51]. Furthermore, not only
subject-to-subject variations but also the task dependability of
ErrPs [8], [17] limits the transferability of decoding models
between different modalities. Although our work focused on
inter-subject variations, the general principles can be easily
transferred to other domain-transfer scenarios like session-to-
session or task-to-task transfer. In our future work we will
focus on developing a general method which is applicable to
all scenarios alike and finally overcomes the domain specificity
of ErrP decoding BCls.

V. CONCLUSION

This work contributes to the development of practical ErrP
decoding by investigating adaptive generic decoding models as
an efficient and effective alternative to a laborious calibration
procedure. We demonstrat the feasibility of calibration-free
systems with acceptable classification accuracies of 72.7 +
9.66%, which can be initialized solely from prior subjects’
data. To compensate performance losses induced by transfer-
ring non-individualized decoders, supervised adaptation to a
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new subject’s individual feature characteristics was investi-
gated and results were at least comparable to the minimal
sample calibration scenario. Accordingly, parameter adaptation
of the class-specific means of a generalized LDA model led
to an average performance increase of +(10.31 £+ 7.69)%
after 350 trials. Contrary, unsupervised adaptation had an
unlearning effect for most subjects. Model accuracies dropped
on average —(5.65 +7.79)% after 350 trials and unsupervised
adaptation only proved effective for some subjects. Finally, our
results demonstrate that first, instantaneous ErrP classification
based on the dataset tested is feasible from the first trial on
with satisfying accuracies. Second, supervised model adapta-
tion could effectively improve the classification performance
and proved superior to a traditional calibration procedure.
Unsupervised adaptation is dependent on the generic model
accuracy and increased the performance for most subjects
with an initial model accuracy higher that the average GM
bACC. A simulation analysis led to similar results, indicating
a minimal initial model accuracy of ~ 75% for unsupervised
adaptation to be practical.
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