A Comparative Pilot Study on ErrPs for Different Usage Conditions of
an Exoskeleton with a Mobile EEG Device

Svea Marie MeyerT*, Ashish Rao Mangalore*, Stefan K. Ehrlichf,
Nicolas Berberich, John Nassour, and Gordon Cheng

Abstract— Exoskeletons and prosthetic devices controlled
using brain-computer interfaces (BCIs) can be prone to errors
due to inconsistent decoding. In recent years, it has been
demonstrated that error-related potentials (ErrPs) can be used
as a feedback signal in electroencephalography (EEG) based
BClIs. However, modern BCIs often take large setup times and
are physically restrictive, making them impractical for everyday
use. In this paper, we use a mobile and easy-to-setup EEG
device to investigate whether an erroneously functioning 1-DOF
exoskeleton in different conditions, namely, visually observing
and wearing the exoskeleton, elicits a brain response that can be
classified. We develop a pipeline that can be applied to these
two conditions and observe from our experiments that there
is evidence for neural responses from electrodes near regions
associated with ErrPs in an environment that resembles the
real world. We found that these error-related responses can be
classified as ErrPs with accuracies ranging from 60% to 71%,
depending on the condition and the subject. Our pipeline could
be further extended to detect and correct erroneous exoskeleton
behavior in real-world settings.

I. INTRODUCTION

Research and applications at the intersection of robotics
and neuroscience are gaining traction and progressively
starting to make positive impacts on healthcare [1]. Brain-
computer interface (BCI) development has been an important
stepping-stone towards function restoration, and assistive and
rehabilitative robotics. Different strategies to control multi-
class BCIs have been studied since the 1970s [2] and include,
e.g., Steady-State Visually Evoked Potentials (SSVEP) and
Motor Imagery (MI) [3]. Electroencephalography (EEG) has
been the preferred method to record and decode brain signals,
as it is relatively cheap, non-invasive and has a high temporal
resolution. Limiting factors such as a low spatial resolution
coupled with the non-stationarity of EEG signals constrain
the precision with which the user’s intent can be decoded,
leading to errors. These errors elicit a particular type of
response called error-related potentials (ErrPs), which have
been shown to occur in the prefrontal region of the brain
upon deviations from expected behavior [4], [S]. They have
successfully been used to improve BCI decoding perfor-
mance either by correcting erroneous machine behavior or
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Fig. 1: An overview of our experimental pipeline designed
to detect ErrPs for different sensing conditions.

by error-based adaptation [6]. ErrPs were initially studied in
simple cursor-based tasks and then progressed to tasks with
robotic devices [7]. Bhattacharyya et al. [8] used a robotic
hand setup to elicit visual ErrPs and demonstrated that ErrPs
could improve the performance of the robot, thus suggesting
the employment of a similar approach for rehabilitative and
prosthetic devices. Further, Iturrate et al. [9] showed how a
neuroprosthesis could learn optimal motor behaviors using
ErrPs elicited from visual observations from a simulated and
a real-world device. In addition to this, for the proprioceptive
case, it has been shown that event-related potentials (ERPs)
are elicited when there is a change in load on the human
arm [10]. While these studies point to a path towards
intuitive prosthetic and rehabilitative device operation, EEG-
based BClIs remain barely used outside laboratories. All the
studies cited above were conducted using well-established
high-cost wet electrode EEG devices. These setups have
higher conductivity at the electrodes and, therefore, a higher
signal quality compared to dry electrodes. However, they also
require longer setup times and are not well suited for home-
based use.

This paper investigates the feasibility of detecting ErrPs
with a low-cost, easy-to-setup EEG device in different condi-
tions, namely, visually observing and wearing the exoskele-
ton. We used an out-of-lab setup, i.e, the experiments were
conducted in environments that mimic daily-life settings. It
consisted of a wearable erroneously functioning exoskeleton
and easy-to-wear portable dry EEG electrodes. We outline
the development of a pipeline with the Unicorn Hybrid
Black (Dry Electrode EEG device) and an adapted EduExo
exoskeleton (1-DOF exoskeleton).



Fig. 2: (a) The observing condition. The user observes
the exoskeleton while wearing the EEG headset in the
dry-electrode configuration. A visually observed erroneous
behavior elicits ErrPs. (b) The wearing condition. The ex-
oskeleton supports flexion or extension, and the user per-
ceives an error if the behavior of the exoskeleton does not
match their key-press.

II. METHODS
A. The Exoskeleton

The 1-DOF exoskeleton used for all experiments was
based on the EduExo. The motor of the off-the-shelf avail-
able exoskeleton was upgraded to a motor of higher torque
rating (21.5 kg-cm) to provide adequate force to move the
arm of the subjects during the wearing condition. The control
of the exoskeleton is performed using an Arduino microcon-
troller. Freedom of motion was allowed at the elbow, and
we encoded two behaviors that would support flexion and
extension of the elbow of the human arm. In behaviors 1 and
2, the exoskeleton moves from a baseline position to a preset
extreme position either up (behavior 1) or down (behavior
2) and then returns to the baseline position. The speed of
motion is uniform throughout the behavior (see Figure [T).

B. Recording EEG Data

We conducted our experiments on two able-bodied par-
ticipants (1 female, 1 male) who were internally recruited
from the Institute of Cognitive Systems. Both participants
are right-handed with normal vision. They were aged 24
and 27 years and had participated in EEG studies before.
The subjects were selected for this pilot experiment based
on their ability to elicit ErrPs, which we validated in the
control condition described in Section This is a pilot
experiment for a full study approved by the TU Munich
institutional ethics review board under the reference number
254/21 S-EB.

In all parts of this pilot study, EEG data was recorded
using the Unicorn Hybrid Black (g.tec medical engineering),
equipped with 8 dry electrodes (Fz, Cz, Pz, Oz, C3, C4,
PO7, and POS) arranged according to the international 10-
20 system. Data was recorded at a sampling rate of 250 Hz
and was transferred via Bluetooth to a separate recording
PC. Using the Linux-C API provided by g.tec, the data was
further streamed over a wireless network via a Lab Stream-
ing Layer (LSL) stream and recorded using the software

LabRecorder [11]. The setup is shown in Figure [2] Depend-
ing on the condition, participants either sat at a distance
of approximately 50 cm to the screen (cursor condition) or
the moving exoskeleton (condition 1 - observing condition)
or were seated wearing the exoskeleton on their left arm
(condition 2 - wearing condition) using the right arm to
control the exoskeleton via key-presses.

C. Experimental Conditions

A total of three experimental conditions were tested. The
first condition was to simply observe the exoskeleton. To
move closer to real-world applications, participants wore the
exoskeleton in a second condition. Information processing
with the additional sensory modality might potentially be
reflected in the EEG signal, thereby enhancing the amount
of information available to the classifier. This may influence
the classification accuracies positively. It could however
also introduce more movement-artifact-based noise, which
is unfavorable for single-trial classification. The timing of
our conditions was inspired by a a previously-studied cursor
condition [12] that had shown to reliably elicit ErrPs. This
condition was further performed as a control experiment.
This design of conditions takes care that their complexities
scale from a toy-problem to real-world use case. All condi-
tions were implemented using the toolbox Psychopy [13].

1) Condition 1 - Observing: To investigate whether ob-
serving erroneous, i.e., unintended behavior of the exoskele-
ton elicits detectable ErrPs in an out-of-lab scenario, partic-
ipants were instructed through audio commands to control
its behavior with key-presses. Audio commands are used
to enable participants to only focus their vision onto the
exoskeleton. Each trial starts with an audio command that
either says “up” or “down”, requiring the participant to press
the respective arrow key on the keyboard. Upon the key-
press, the exoskeleton executes behavior 1 or 2, depending on
the command. Analogous to the control experiment (cursor
condition, explained below), erroneous behavior is randomly
introduced in 30% of the trials, i.e., the exoskeleton moves in
the direction opposite to that of the key-press. Errors are only
introduced when the participant presses the correct key. At
the end of each trial, feedback is presented by playing a short
positive sound or a short negative sound, indicating whether
the exoskeleton moved in the correct direction. Participants
perform this condition a total of 4 blocks with 80 trials each,
leading to approximately 96 error and 224 non-error trials.

2) Condition 2 - Wearing: Mimicking real-world appli-
cations, e.g, rehabilitative applications, participants wear the
exoskeleton in the second condition. Since different studies
reported the occurrence of proprioceptively induced Event
Related Potentials (ERPs) [10], [14], the objective was to
investigate if ERPs, and more specifically ErrPs, can be
elicited in a wearing condition. For condition 2, we use the
same protocol as described for condition 1, with the only
difference being that the participant is wearing instead of
purely observing the exoskeleton. Participants perform this
condition a total of 4 blocks with 80 trials each, leading to
approximately 96 error and 224 non-error trials.



3) Control Condition - Cursor: To rule out individuals
who couldn’t generate feasible ErrPs, participants performed
a control condition that had shown to reliably elicit ErrPs
[12]. The cursor condition requires participants to move a
small square into a bigger square placed either above, right
or to the left of the small square with respective key-presses.
Erroneous behavior was introduced by randomized wrong
cursor responses in 30% of the trials.

III. SIGNAL PROCESSING AND SINGLE-TRIAL
DECODING

A. Preprocessing

For visual inspection of the data as presented in Figure
[l recordings were processed using the MATLAB package
EEGLAB [15]. EEG signals were first high and then low pass
filtered using the integrated FIR filter, leading to remaining
frequencies between 1 Hz and 20 Hz. Afterwards, bad
channels were detected and interpolated. The data was then
epoched into error trials and non-error trials starting from 200
ms before the key-press to 1000 ms after. The epoched data
of all channels were single-trial normalized by subtracting
the mean of the signal in each epoch for each channel after
the key-press. Additionally, bad epochs were excluded when
they contained amplitudes +- 100 pV (less than 5% of all
epochs in all conditions). All error trials and all non-error
trials were averaged over time to visualize ERPs and identify
condition differences.

B. Single-Trial Decoding

To discriminate error and non-error trials, we followed the
approach employed by Ehrlich et al. [7]. We trained a Linear
Discriminant Analysis (LDA) per subject and condition on
the preprocessed data after balancing our data by random
downsampling. We considered all 8 channels available in
the recording device to construct our features. Differences
between the error and the non-error trials were observable
within 600 ms after the key-press (see Figures [3). Thus, a
total of sixteen sliding windows with a length of 100 ms and
a stride of 50 ms were selected starting from after the key-
press and averaged for every channel, leading to one hundred
twenty-eight features per trial. We performed 10-fold cross-
validation to validate the accuracy of our classifier trained
for each subject.

IV. RESULTS
A. Evidence from Visual Inspection

After the occurrence of the error (stimulus), the typical
choice-reaction ErrP signal shows an error related negativity
followed by a positivity which occurs 100-400 ms later [4].
In this regard, we inspect our results after preprocessing the
raw signal and averaging them over the trials. Comparisons
of error-trials and non-error trials are presented in Figure [3[
left for the observing condition and right for the wearing
condition). For subject 1, a negativity is observable for error
trials compared to non-error trials at Cz at around 200 ms.
It is followed by a positivity at around 500 ms. For this
subject, the topoplots reveal a positivity at Cz at around 400

ms that evolves into a stronger positivity over the entire head
at 500 ms. Looking at subject 2’s topoplot a similar pattern
is observable. A positivity at Cz is observable at around 400
ms that evolves into a stronger positivity that extends over
all electrodes at around 500 ms. Results are less conclusive
for the wearing condition. No characteristic ErrP trace is
observable for neither of the subjects. However, in line with
findings for the observing condition, the biggest difference
between error and non-error trials was found at around 500
ms for both subjects (see topoplots in Figure [3).

B. Results on Single-Trial Decoding of ErrPs

The results of the LDA based classifier for the ErrPs in
the wearing and observing conditions are shown in Table[I]
Single-trial decoding accuracies of up to 71% were obtained
for the observing condition, which is another evidence in
support of ErrPs. For the wearing condition, the single-trial
decoding performed less accurately (60%), which is plausible
considering the visual inspection in Figures [3]

TABLE I: ErrP classification accuracy in the observing and
wearing conditions.

Observing condition
Participant || Overall True Positive | True Negative
Accuracy Rate Rate
Subject 1 70.9% 71.0% 70.9%
Subject 2 66.8% 67.4% 66.4%
Wearing condition
Participant || Overall True Positive | True Negative
Accuracy Rate Rate
Subject 1 61.3% 61.1% 61.4%
Subject 2 61.0% 60.1% 61.5%

V. DISCUSSION

With our low-cost setup, we saw evidence for the occur-
rence of ErrPs in the observing condition that was further
supported by single-trial decoding accuracies of up to 71%.
For the wearing condition, our findings are less conclusive.
While we achieved single-trial classification accuracies of
around 60%, a visual comparison of averaged error and
non-error trials did not reveal systematic differences. This
is in line with findings reported by Lopez et al. [16] who
investigated visual, auditory and vibratory feedback-related
negativity, reporting the highest single-trial decoding accura-
cies for the visual and the lowest accuracies for the vibratory
condition. Even though different studies reported the occur-
rence of proprioceptively induced ERPs [10], [14], to the best
of our knowledge, no indications for the occurrence of pro-
prioceptively induced ErrPs have been reported so far. A full
study is needed to explore whether there are circumstances
under which ErrPs can be elicited proprioceptively. Our setup
consisted of only 8 electrodes. Increasing the number of
electrodes could result in increased classification accuracies
and decrease inter-subject variability.

VI. CONCLUSION
In this pilot study, we investigated the feasibility of de-
tecting ErrPs during exoskeleton usage in a low-cost, out-of-
lab setup. We found indications for the occurrence of ErrPs
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Fig. 3: The averaged response over all error and non-error trials of the channel Cz for the two conditions. The left panel
shows the response of the two subjects for the observing condition. The corresponding topoplots show how the frontocentral
regions are activated during the interval of 400-500 ms after the keyboard press. The right panel shows the response of
the two subjects in the wearing condition. While the averaged error trials’ modulations are smaller compared to their
visual-observation counterparts, the relative activations of the frontocentral regions follow a similar trend.

when participants were observing the exoskeleton, leading
to single-trial decoding accuracies of up to 71%. To mimic
real-world applications even closer, we investigated whether
ErrPs would be elicited while wearing the exoskeleton. In
this condition, results remained inconclusive and require
further investigation with additional subjects. Nevertheless,
extending this setup to an online system that corrects the er-
roneous behavior of a rehabilitative device would be a major
step towards making a closed-loop rehabilitative device for
real-world use cases.
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