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ABSTRACT 

We investigate the factors influencing the performance of collaboration between humans and 

autonomous agents, focusing on how and why this performance varies. Our hypotheses are 

grounded in theories of uncertainty reduction and dynamic capabilities. Results from a laboratory 

experiment involving approximately 45 minutes of human-agent collaboration per subject 

indicate that a passive information-seeking strategy affects collaboration performance, 

particularly when humans observe correct actions performed by the agent. Additionally, people's 

adaptability, assessed through a measure of dynamic capabilities, positively influences 

performance. This effect is particularly strong when individuals feel a high level of safety with 

the agent. Using a multidisciplinary approach, we highlight unique challenges in human-robot 

interaction, particularly increased uncertainty, to enhance our understanding of how these factors 

affect the effectiveness of existing theories in human-agent collaborative settings. 
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1. INTRODUCTION 

Robots are increasingly becoming an integral part of many workplaces. As robot technology 

advances, human-robot teams are achieving increasingly complex tasks (e.g., Evans et al., 2017). 

Over 750,000 robots are collaborating with employees at Amazon to handle highly repetitive 

tasks, allowing staff to focus on delivering better service to customers. The latest robot, Sequoia, 

enhances efficiency by helping employees list items for sale on Amazon.com more quickly and 

process orders faster and more accurately (Amazon, 2023). As interactions with employees 

grow, ensuring successful collaboration between humans and robots becomes increasingly vital. 

To understand and facilitate successful interactions, Uncertainty Reduction Theory 

(URT) suggests that individuals can employ various strategies to reduce uncertainty. For 

example, they can use information-seeking strategies to actively gather information about others. 

This can be achieved through direct questions (interactive strategies) or by observing the other 

person's behavior (passive strategy). 

Applying URT to human-robot interaction presents unique challenges and strategies. 

While human-human interactions heavily rely on complex social cues that we naturally interpret, 

human-robot interactions often demand clearer communication and transparency from the robot 

to minimize uncertainty (Natarajan et al., 2023). This brings attention to the effectiveness of 

passive information-seeking strategies in this context. Humans excel at understanding intricate 

social cues and behaviors from one another, which fosters mutual understanding and reduces the 

need for significant adaptation (Memar, 2018). In contrast, human adaptation in human-robot 

interactions can be quite different. Individuals may need to learn specific commands or methods 

to communicate effectively with robots, which may involve adapting to various interfaces or 
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discovering new ways to give instructions. Moreover, humans must exercise greater caution and 

awareness of safety protocols when interacting with robots, especially in collaborative 

environments where physical interaction is involved. This differs from human-human 

interactions, where safety concerns are typically lower, as people are generally aware of each 

other's presence and actions (Tong et al., 2024). 

This raises questions about the applicability of established theories regarding successful 

team performance in the context of human-robot collaboration. When integrated into human-

nonhuman ensembles, AI-related technologies fundamentally change our understanding of how 

and why routines evolve or maintain stability (Murray et al., 2020). To date, research on AI in 

management has primarily focused on how organizations adopt and utilize AI technologies (e.g., 

Alsheibani et al., 2020; Pumpkin et al., 2019). Some scholars have explored the dual applications 

of AI, investigating whether AI complements or substitutes human capital (e.g., Choudhury et 

al., 2020; Fountaine et al., 2019; Daugherty & Wilson, 2018). Others have examined the 

potential impacts of AI on various forms of human capital (Jia et al., 2023). While some 

researchers have acknowledged the blurred lines between AI’s complementary and substitution 

effects (Raisch & Krakowski, 2023), they have yet to frame this relationship as collaborative. 

Despite advancements, significant theoretical and methodological gaps remain. Previous 

studies often frame AI as either replacing or augmenting human roles, overlooking the nuanced 

collaboration between humans and AI. This limits our understanding of optimizing human-agent 

collaboration. Additionally, there is a lack of comprehensive frameworks addressing the dynamic 

nature of human-AI interactions and the mechanisms facilitating their integration. This 

dynamism adds uncertainty to the interaction, a characteristic more pronounced in human-agent 
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interactions, similar to the initial meeting of two strangers (Berger & Calabrese, 1975), as 

individuals often have limited experience with their machine counterparts. Most research focuses 

on algorithms and data analytics for decision-making and efficiency, but human-agent interaction 

involves robots with AI engaging with humans in physical environments. AI allows robots to 

interpret human cues, enabling both physical and cognitive collaboration, which requires 

additional, unexplored factors for success. For instance, how humans perceive an agent’s actions 

can influence performance, yet this is difficult to measure through post hoc surveys. This gap 

hinders the development of a process model for human-robot interaction, which could clarify 

performance variations in collaboration. In this article, we explore the interplay between humans 

and autonomous agents to address the question: What factors predict the performance of 

collaboration between humans and autonomous agents? 

To investigate this question, we integrate uncertainty reduction theory with the dynamic 

capabilities framework. The central premise of uncertainty reduction theory (URT) is that people 

are inherently motivated to reduce the uncertainty that characterizes initial relationships to better 

predict and explain others' behaviors. Individuals employ information-seeking strategies to 

mitigate this uncertainty (Berger & Bradac, 1982). Given human-robot interaction often involves 

greater uncertainty compared to human-human interaction due to differences in communication 

styles, understanding, and predictability. This uncertainty can heighten the importance of 

adaptation on the human part to ensure effective and safe collaboration. Human adaptation can 

be viewed through the lens of the dynamic capabilities framework—a theory that often examines 

the interaction between adaptation and uncertainty (Shoemaker et al., 2018). The dynamic 

capabilities framework posits that the value of possessing dynamic capabilities increases as 
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environmental uncertainty rises. By integrating these theories, we expect that the performance of 

collaboration between humans and autonomous agents is influenced by humans' passive 

information-seeking strategies (observing the behavior of the agent) and their dynamic 

capabilities, both of which may differentially affect collaboration performance. 

We test our model through two experimental studies involving human subjects, each 

conducting a joint task with an autonomous agent (embodied as a cursor on a computer screen or 

a UR10 robotic manipulator)1. Using electroencephalogram (EEG) technology, we collect data 

on the cortical electrical activity of human brains, associated with the passive information-

seeking strategies of humans, along with self-reported perceptions of safety towards the agent 

and behavioral measures of dynamic capabilities (i.e., response times). In doing so, we make 

several contributions to the scholarship on AI in management and the underlying theories we 

draw from. 

  This study contributes to the growing body of research on AI applications in management 

(e.g., Aron et al., 2011; Brynjolfsson et al., 2019; Sun et al., 2019) by identifying key 

determinants, including physical and psychological cues, that influence human-agent 

collaboration. Additionally, we draw theoretical and methodological insights from strategic 

management, robotics, and neuroscience, addressing calls for interdisciplinary approaches to 

fully understand AI's impact on management practices (e.g., Venkatasubramanian et al., 2020). 

In doing so, our study shifts the theoretical discussion toward a dynamic model of human-AI 

collaboration, which has been largely absent in the literature, partly due to methodological 

 
1 Partial data is available at https://github.com/stefan-ehrlich/HRC_neurobased_taskplanning and is provided by 
Ehrlich et al. (2023). 

https://github.com/stefan-ehrlich/HRC_neurobased_taskplanning
https://github.com/stefan-ehrlich/HRC_neurobased_taskplanning
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challenges. We propose that how humans perceive the action of the collaborating agent partly 

explains the performance of the collaboration between humans and agents. As Popper (1957, pp. 

39-40) argued, examining the dynamic processes of a phenomenon helps explain “how and why 

something happens.”  

Moreover, we enhance the literature by examining the potential impact of individual 

attributes such as dynamic capabilities. Previous studies often treat the potential variability 

across individuals as a nuisance or error variance, which can obscure differences between levels 

of their independent variables at a general level (Vogel & Awh, 2008). However, previous 

studies suggest that the performance of collaboration between humans and robots can vary 

significantly based on the individual (Hopko et al., 2022). The literature on robotics suggests that 

high adaptability and autonomy are essential design features of the controller (Beer et al., 2014; 

Heerink et al., 2010). The potential for human adaptation in response to technological constraints 

needs to be better understood (Caleb-Solly et al., 2018). This adaptability can be harnessed to 

address some of the limitations of robots. High adaptability fosters greater levels of trust due to a 

stronger perception of the robot's behavior (Fischer et al., 2018), ultimately resulting in 

successful collaboration. 

Finally, our integrative approach enhances the theories from which we draw. Therefore, 

we reinvigorate the dynamic capabilities framework within these discussions by elucidating how 

dynamic capabilities can influence collaboration performance with modern intelligent machines. 

While the dynamic capabilities framework is generally applied to human-to-human interactions 

(e.g., Grant et al., 2011; Grijalva & Harms, 2014), our focus extends its applicability to 

interactions with intelligent machines. Additionally, our work has practical implications, 
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emphasizing significant ways in which the integration of intelligent machines into the workplace 

may impact human-agent collaboration practices. 

 

2. CONCEPTUAL BACKGROUND  

We draw on uncertainty reduction theory and dynamic capabilities, both of which provide 

insights into how individuals manage and mitigate uncertainty. According to uncertainty 

reduction theory (URT), individuals prioritize alleviating uncertainty during interactions to 

enhance the predictability of each party's behavior (Berger & Calabrese, 1975). A key aspect of 

URT is that individuals employ three information-seeking strategies to reduce uncertainty: 

active, passive, and interactive (Berger & Bradac, 1982). In VUCA (Volatile, Uncertain, 

Complex, Ambiguous) conditions, researchers emphasize the importance of dynamic capabilities 

for performance (Schoemaker et al., 2018). 

 
 
2.1. A passive information-seeking strategy for reducing uncertainty  

When people encounter uncertainty about one another, it can motivate them to interact or 

communicate in order to reduce that uncertainty. According to uncertainty reduction theory 

(URT), individuals' primary concern during interactions is to alleviate uncertainty and enhance 

the predictability of each party's behaviors (Berger & Calabrese, 1975). The central tenet of URT 

is that individuals utilize three information-seeking strategies to reduce uncertainty: active, 

passive, and interactive (Berger & Bradac, 1982).  
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The uncertainty reduction process is relevant to our research because workers are 

essentially trying to establish a working relationship with the agent. The interactions can 

potentially influence outcomes (Berger, 1986).  For instance, employing a passive strategy 

involves observing the autonomous agent unobtrusively without direct interaction.  This passive 

information-gathering strategy used by humans can be effectively measured and explored within 

an emerging body of research in robotics and neuroscience (Wiese et al., 2017). This line of 

inquiry suggests that bodily signals from human partners, as well as their cognitive states, can be 

monitored in near real-time through electro- or psychophysiological signals such as 

electroencephalography, electromyography, eye tracking, heart rate, or galvanic skin response, or 

a combination of these methods (see, for example, DelPreto et al., 2020).  

Different types of information that humans learn from observing an agent can 

significantly impact performance. Individuals can gain insights about a collaborating agent by 

noting both negative and positive information regarding its actions (e.g., errors and non-errors). 

Errors are inevitable and frequently occur in autonomous robot systems (Steinbauer, 2013). 

Research has identified a negative correlation between robot errors and task success (Carlson & 

Murphy, 2005). Robots that do not make mistakes are rated as significantly more trustworthy 

than those that do (Salem et al., 2015). A survey and storyboard-based simulation revealed that 

human reactions to low and high error severity differ notably, with error severity correlated with 

a loss of trust in the robot (Rossi et al., 2017). 

While prior research consistently shows that robot errors negatively affect task 

performance, the impact of these errors on people's perceptions of the robot—particularly 

regarding perceived trustworthiness—remains inconclusive (Stiber & Huang, 2020). Some 
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studies have found contradictory results, indicating minor to no statistical significance regarding 

the negative impact of errors on trust (Flook et al., 2019). In fact, some research suggests that 

participants preferred the robot more when it made mistakes during interactions compared to 

when it performed flawlessly (Mirning et al., 2017). This phenomenon is commonly referred to 

as the pratfall effect—an increase in likability due to errors (Aronson et al., 1966). Therefore, we 

present the following hypotheses: 

  

H1a: A passive information-seeking strategy for negative information about the agent is more 

positively correlated with collaboration performance than a passive information-seeking strategy 

for positive information. 

H1b: A passive information-seeking strategy for negative information about the agent is less 

positively correlated with collaboration performance than a passive information-seeking strategy 

for positive information. 

  

2.2. Dynamic capabilities for reducing uncertainty  

In addition to passive information-seeking strategies, increased uncertainty in collaboration 

between humans and autonomous agents may also necessitate adaptation on the human side. 

Human workers may find themselves interacting with zero-history autonomous agents, lacking 

individualized information about these machines that could help reduce uncertainty. As a result, 

humans might experience high levels of uncertainty and be motivated to exhibit human 

adaptability to mitigate this uncertainty. 
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         Researchers in strategic management have suggested that the value of dynamic capabilities 

increases in tandem with rising environmental uncertainty. Navigating a VUCA world—volatile, 

uncertain, complex, and ambiguous—requires dynamic capabilities to maintain an organization's 

agility, commitment, and profitability (Schoemaker et al., 2018). Dynamic capabilities were 

initially conceptualized at the organizational level, but the concept has since been broadened to 

encompass individuals' abilities to adapt. To navigate uncertainty, individuals with robust 

dynamic capabilities can stay agile and ready to respond to environmental changes. 

Research on human-robot collaboration emphasizes the importance of integrating 

humans' adaptive capabilities during physical interactions to ensure successful collaboration 

between humans and agents (Ajoudani et al., 2018). Using the commercially available Roomba 

robot, Sung et al. (2010) proposed the Domestic Robot Ecology—a framework for understanding 

the long-term acceptance of robots in the home. They identified four temporal stages: 

preadoption, adoption, adaptation, and use/retention. During the adaptation phase, individuals 

become more willing to learn about the robot’s technical limitations and affordances, prompting 

them to modify their environment and behavior (e.g., picking up clutter and rearranging items) to 

maximize the benefits observed in the earlier stages. Several empirical studies have explored 

how humans adapt when collaborating with intelligent agents or robots. These studies primarily 

focus on human performance and the resulting subtle behavioral changes observed during short 

experiments (e.g. Nikolaidis et al., 2017). 

  

2.2.1. The Moderating Role of Perceived Safety in Dynamic Capabilities and Uncertainty 

Reduction 
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So far, we have proposed neural and behavioral mechanisms to explain the dynamics of human-

agent collaboration. However, we have implicitly assumed that humans perceive the agent as 

safe for interaction, which may not always be true. To refine our theory, we suggest that 

perceived safety serves as a boundary condition for the proposed relationships. 

Due to the unique characteristics of robots—such as physical embodiment, intelligence, 

and decision-making—researchers are increasingly emphasizing the role of trust in human-robot 

interactions (e.g., Baker et al., 2018; Natarajan et al., 2020). Perceived safety refers to “the user’s 

perception of the level of danger when interacting with a robot, as well as the user’s level of 

comfort during that interaction” (Bartneck et al., 2009). In contrast to physical safety, which 

focuses on preventing robots from causing harm (e.g., through collisions), perceived safety 

highlights the significant influence of individuals' psychological perceptions on the acceptability 

and adoption of robots (Zacharaki et al., 2020). Users may feel unsafe even in the absence of 

physical risks, as various factors—such as the context of use, comfort, familiarity, sense of 

control, and trust—impact the overall user experience with a robot (Akalin et al., 2023). 

Perceived safety is essential for long-term interaction, collaboration, and acceptance in 

human-robot interaction (HRI). For HRI to be deemed acceptable, a robot must refrain from 

actions that could induce fear, surprise, discomfort, or create an unpleasant social situation for 

humans, even if those actions do not cause any physical harm (Sisbot et al., 2010). As robots are 

still relatively new to many people, this unfamiliarity heightens the significance of perceived 

safety. Consequently, individuals may be more cautious and sensitive to safety cues when 

interacting with robots compared to human interactions (Akalin et al., 2023).   
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We hypothesize that perceived safety plays a positive moderating role in the effects of 

dynamic capabilities on collaboration performance. In human-robot interaction, users may adjust 

their behavior more significantly based on their perception of safety. For instance, they might 

maintain a greater physical distance from a robot they perceive as unsafe or avoid certain 

interactions altogether (Akalin et al., 2023). In human-human interaction, while perceived safety 

does influence behavior, the adaptations are often less pronounced due to the inherent familiarity 

with human interactions. When humans feel unsafe, they are less likely to modify their behavior 

or explore new ways of interacting with the robot. This reluctance can hinder the development or 

activation of dynamic capabilities, as users may prefer to stick to familiar behaviors rather than 

pursue more efficient or innovative interactions (Hamad et al., 2024). Therefore, we propose the 

following hypothesis:  

 

Hypothesis 2: The effect of dynamic capabilities on collaboration performance is positively 

moderated by the level of perceived safety regarding the agent. 

 
 
3. METHODS 

 

Participants 

Twenty-five healthy participants took part in the two experiments. Data from one participant 

(s07) had to be excluded due to technical issues during recording leading to missing event 

information. The remaining 24 participants were equally distributed by gender (12 females, 12 

males) and had an average age of 26.5 years, with a standard deviation of 3.67 years. Half of the 
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participants collaborated with the agent embodied in a cursor on a computer screen, and the other 

half with the agent embodied in an industrial robot manipulator. Since the study focused on 

single-subject effects, a larger sample size was not necessary. However, a sample size greater 

than 10 was selected to allow for basic statistical analyses and potential group-level conclusions. 

All participants had a technical background, mostly at the bachelor’s level in fields such as 

electrical engineering, computer science, or mechatronics. All but one participant was right-

handed, and all had normal or corrected-to-normal vision. Each participant received written and 

verbal instructions about the experimental protocol, provided written informed consent, and was 

compensated afterward. The studies were approved by the ethics review board of the Technical 

University of Munich, reference numbers 80/20 S-KH and 769/20 S-KK. We also note that the 

data used in this study were published previously in Dimova-Edeleva et al. (2022), and Ehrlich et 

al. (2023). 

  

Measures.  

Dynamic capabilities. Numerous definitions of dynamic capabilities exist, with different authors 

emphasizing various aspects. Teece et al. (1997, p. 516) define dynamic capabilities as “the 

firm’s ability to integrate, build, and reconfigure internal and external competences to address 

rapidly changing environments.” In this context, competences relate to “patterns of current 

practice and learning” (Teece et al. 1997, p. 518), enabling firms to adapt their operations (Helfat 

& Winter, 2011). Zollo and Winter (2002, p. 340) describe dynamic capabilities as “a learned 

and stable pattern of collective activity” that systematically modifies operating routines for 
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improved effectiveness, introducing a “modifying” capability as a third type of dynamic 

capability. 

The level of analysis for dynamic capabilities varies. Teece et al. (1997, p. 515) focus on 

the firm level, emphasizing the capacity to renew competences, while Eisenhardt and Martin 

(2000, p. 1107) address the process level, highlighting the evolution and recombination of 

resources for competitive advantage. Zollo and Winter (2002, p. 340) emphasize collective 

activity patterns and behavioral adjustments through learning, as noted by Helfat et al. (2007, p. 

3). As the concept has evolved, the analysis level has shifted from collective to individual or 

microfoundational levels, focusing on “managerial learning and adaptation” (Kor & Mesko, 

2013, p.234), “entrepreneurial managers” (Teece, 2016), and “dynamic managerial capabilities” 

(Adner & Helfat, 2003) as well as “managerial cognitive capabilities” (Helfat & Peteraf, 2015, p. 

832). 

While there are some measures of dynamic capabilities (e.g., Drnevich & Kriauciunas 

2011; Kump et al., 2019), they are not suitable for laboratory data. Following prior work 

(Wollersheim & Heimeriks, 2016), we assess dynamic capability based on behavioral data, 

avoiding biases associated with self-assessments and acknowledging the tacit nature of dynamic 

capabilities (Dosi et al. 2000). 

To develop an empirically grounded understanding of dynamic capabilities, we adopt 

Zollo and Winter’s (2002, p. 340) definition, emphasizing that routines are fundamental building 

blocks (Salvato & Rerup 2011). Their definition highlights “learning” and “modification,” with 

learning representing insights from experience (Cohen 1991) and modification relating to 

internal adjustments (Dosi et al. 2000). Zollo and Winter (2002, p. 340) assert that “dynamic 

capabilities arise from learning” and are systematic methods for modifying routines. In our 
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study, participants adjusted their routines through learning and procedural modifications due to 

task novelty. For example, as human and agent partners switched roles, participants had to learn 

new rules and adapt accordingly. A change in average response speed indicates behavioral 

adaptation. Specifically, faster response times during task completion signify “improved 

effectiveness” (Zollo & Winter, 2002). We used changes in response time to measure dynamic 

capability and assess participants' effectiveness. 

To address tautology issues (e.g., Helfat & Peteraf, 2009), we focused on “process 

improvement” rather than “performance” (Helfat et al. 2007, p. 3). Our study design reflects this 

by relying on behavioral measures, assessing responses to novelty after defining dynamic 

capabilities as learning and modifying routines (Zollo & Winter 2002). We operationalized 

dynamic capabilities in terms of speed, reflecting the ability to “play quickly” to complete tasks. 

Attention checks were incorporated into our experiment, ensuring that our measures accurately 

reflected effectiveness following environmental changes. 

 

Passive information seeking strategies:  Previous studies measuring passive information-seeking 

strategies (i.e., observation) often rely on surveys asking respondents about their search 

behaviors. Examples include viewing a Facebook friend's profile, blog posts, or posted 

photographs without influencing the target or any other Facebook user (Anderson, 2024) and 

statements like, “If I had concerns about my private health matter, I would seek information from 

another source rather than my supervisors” (Li & Lee, 2020). 

However, these traditional self-report methods can be subjective. Neuroscientific 

approaches can provide objective data by directly measuring brain activity, reducing potential 

bias. A more effective method would utilize naturally occurring brain signals during specific 
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observations. One such signal is the error-related potential (ErrP) which we use to measure 

human observations of the actions of a collaborating autonomous agent. The ErrP is a specific 

form of event-related potential (ERP) linked to brain processes implicated in error- and 

performance monitoring, and while being an established marker for neuroscientific studies has 

also been proposed as a marker for the assessment and adaptation of robot behavior in human-

robot interaction (Ferrez & Millan, 2005, Ehrlich 2020, Ehrlich & Cheng 2016). 

This ErrP signal is consistently generated when a person consciously or unconsciously 

recognizes that an error has occurred, even if the error was made by someone else (Dimova-

Edeleva et al., 2022; Ferrez & Millan, 2005). 

 

Human-robot collaborative task 

The experimental task involves human-agent interaction in a grid-world environment, where the 

participants work together with an autonomous agent to complete a trajectory-following task. 

The task takes place in a 7x7 grid, with both the human and the agent collaborating to move the 

cursor (or robot's end-effector) across specific tiles along a designated path. The objective is to 

guide the cursor through each tile in the correct sequence to complete the trajectory. A trial is 

defined as a single movement of the robot’s end-effector from one grid tile to another. To avoid 

any visual habituation, the start and end points of the trajectory are randomly chosen, ensuring 

that the path always includes at least one directional change. For the remainder of this paper, the 

terms agent and robot are used interchangeably. 

Two collaboration scenarios are tested: (1) Sequential Collaboration (sC): In this 

scenario, the workspace is divided into two colored sections (green and blue), with one section 
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assigned to the human and the other to the robot. Each participant is responsible for controlling 

the end-effector within their designated area, with control switching at the boundary between the 

two sections. (2) Intermittent Collaboration (iC): Here, both the human and robot have shared 

responsibility for the entire trajectory but are limited in their control. The human can only move 

the robot up and left, while the robot controls the down and right movements. Together, they 

collaborate to control all four directions. 

Takeovers occur when control shifts between the human and robot. In the sequential 

scenario, the takeover happens at the boundary between their respective areas. In the intermittent 

scenario, takeovers depend on the movement direction. There is no limit to how many takeovers 

can happen. 

Errors in control can occur at any time. The robot has a 30% chance of making an error, 

and this may or may not result in a human takeover. Corrections could be handled by either the 

human or the agent, depending on the direction of movement relative to the trajectory. 

Throughout the task, human and agent roles are clearly defined, allowing participants to 

anticipate takeover situations, and fostering mental preparation. These anticipation periods, 

especially just before a takeover, are of particular interest in the analysis of the data. Trials 

involving these anticipatory moments are critical for understanding the cognitive processes 

during collaboration. 

         The experiment consisted of 12 blocks in total, alternating between the sC and iC 

scenarios, with each block containing 13 episodes. An episode included all the necessary trials—

each being a single movement from one tile to a neighboring one—to complete the marked 

trajectory from the start to the end point. Upon successfully completing an episode, a new 
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episode with a new trajectory began. After the EEG setup was completed, participants first 

performed a test block for each scenario, consisting of five episodes per scenario, to ensure they 

fully understood the experimental setup. The actual experiment then commenced, with 

participants collaborating with the robot and taking short breaks between blocks as needed. 

Questionnaires were administered before and after the experiment to account for potential 

outliers based on prior experience with robots.  

Experimental setups are illustrated in Fig 1A and 1B. In experiment 1, participants were 

seated in front of a computer screen displaying the grid environment; the agent embodied as a 

red cursor moving from tile to tile controlled either by the agent or the subject. In experiment 2, 

participants were seated in front of a UR10 industrial robot, embodying the agent, whose end-

effector was placed above a screen, displaying the grid environment. Further technical details are 

described in the original papers by Dimova-Edeleva et al. (2022) and Ehrlich et al. (2023). 

 INSERT FIGURE 1 ABOUT HERE 

EEG data processing 

EEG data was collected using a Brain Products actiChamp amplifier with 32 active gel-based 

electrodes, arranged according to the extended international 10–20 system, covering locations 

such as (FP1, FP2, F3, F4, F7, F8, FC1, FC2, FC5, FC6, C3, C4, T7, T8, CP5, CP6, P3, P4, P7, 

P8, TP9, TP10, O1, O2, Fz, Cz, Pz, EOG1, EOG2, EOG3). The electrodes were referenced to the 

average of TP9 and TP10, and the sampling rate was set at 1,000 Hz. Three additional channels 

captured EOG signals from specific facial points (left and right outer canthi and forehead), 

following the method suggested by Schloegl et al (2007).  
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Data preprocessing was performed using functions from the Matlab EEGLAB toolbox 

(Delorme & Makeig, 2004). First, a zero-phase Hamming-windowed sinc FIR band-pass filter 

with cutoff frequencies of 1 Hz and 40 Hz was applied to the EEG and EOG signals to eliminate 

high-frequency and power-line noise. EOG artifacts such as eye blinks and lateral movements 

were corrected using a regression-based method from Schloegl et al. The artifact-contaminated 

EEG channels were identified using normalized kurtosis, following which spherical interpolation 

was used to reconstruct rejected channels from the signal of neighboring electrodes. The data 

were then down-sampled to 250 Hz to decrease computation time for the subsequent 

The remaining artifacts were reduced using independent component analysis (ICA), 

which was performed using the infomax algorithm (runica). The resulting independent 

components (ICs) were submitted to the EEGLAB ADJUST plug-in for automatic identification 

(Mognon et al., 2011) and removal of ICs associated with generic discontinuities, eye movement, 

facial muscle, and neck tension-related artifacts. Finally, the data were then re-referenced using a 

common average reference (CAR) to further reduce external noise.  

The data from all participants were segmented into epochs by extracting time intervals 

from -200 to 1000 ms relative to the onset of the cursor/robot movement (with t = 0 ms marking 

the start of the cursor/robot movement). These epochs were then categorized into five groups: 

Human non-error/error trials, e.g. correct and incorrect cursor/robot moves which were 

controlled by the subject, interface error trials, e.g. incorrect cursor/robot moves which were 

controlled by the subject, but, despite correct subject command wrongly executed (simulating a 

faulty interface), and agent non-error/error trials, e.g. correct and incorrect cursor/robot moves 

which were controlled by the autonomous agent. Baseline correction was applied to each trial 
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and channel individually by subtracting the average amplitude of the -200 to 0 ms period from 

the entire signal epoch. 

We then examined the temporal activation patterns, our neurophysiological index; i.e., 

average amplitudes of the event-related potentials (ERPs) at channel Cz (mid-central area) in 

pre-defined timeframes generated while participants observed the robot under the various 

experimental conditions described earlier. Channel and timeframes were chosen according to the 

ERP components relevant for brain processes linked to error- and performance monitoring, e.g. 

the event-related negativity (ERN) observed between 80-150 ms post stimulus, the P300 

component observed between 250-500 ms post stimulus, and the Late Positive Potential (LPP), 

observed between 400-800 ms post stimulus. 

 

4. RESULTS 

We began by testing hypothesis 1, examining the relationship between specific event-related 

potential (ERP) components, our neurophysiological index, and joint task performance.  The 

LPP, which occurs between 400-800 ms after stimulus onset, was a significant predictor of 

collaboration performance during autonomous agent-controlled trials. Specifically, higher LPP 

activation during agent non-error trials (observations of the agent's correct actions) was 

associated with a greater percentage of correct responses from humans and improved 

collaboration performance (b = 6.545, t(23) = 2.775, p = 0.011). This suggests that the cognitive 

processes reflected in the LPP component are linked to fewer errors, indicating better 

performance. 
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Similarly, the P300 component, was also a significant predictor of performance (b = 

2.067, t(23) = 2.133, p = 0.044). The P300 component is typically associated with attention 

allocation and conflict monitoring. In our study, higher P300 amplitudes during human non-error 

trials predicted better performance in terms of human error responses (vs. correct responses). 

This finding indicates that attentional focus and cognitive conflict resolution during human-

controlled actions contribute directly to the participants’ ability to make errors. Our results on 

LPP and P300 components support H1a and H1b. Our results on the LPP and P300 components 

indicate that both H1a (negative information-seeking strategies) and H1b (positive information-

seeking strategies) are significant. However, the positive information-seeking strategy (H1b) 

appears to be a stronger predictor. 

We then examined the relationships among human dynamic capabilities, perceived 

safety, and collaboration performance as proposed in H2. As mentioned earlier, we calculated the 

change in average response speed, which reflects behavioral adaptation, and used it as a proxy 

for dynamic capabilities. This variable emerged as a significant predictor of collaboration 

performance (b = 62.773, t(23) = 2.799, p = 0.010). A steeper slope, indicating slower adaptation 

and responses, was positively correlated with a higher percentage of human error responses, 

suggesting decreased collaboration performance. This finding indicates a significant positive 

main effect of human dynamic capabilities on collaboration performance. 

As predicted, a significant moderation effect was observed between human dynamic 

capability and self-reported safety perception regarding robots (b = 2.259, t(23) = 2.198, p = 

0.039), alongside a main effect of the LPP component during agent-controlled trials (b = 5.542, 

t(23) = 2.492, p = 0.021), predicting joint task performance. We express the following OLS 
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regression model (LPP of agent-controlled trials: F(2, 21) = 6.936, p = 0.005; P300 of human-

controlled trials: F(2, 21) = 7.597, p = 0.003): 

Joint task performance = β0 + β1⋅ERP Component (LPP or P300) + β2⋅Dynamic 

Capability × Perceived Safety + ϵti 

The positive relationship between dynamic capabilities and collaboration performance 

was stronger for subjects who perceived the robot as safer, as indicated by a score of +1 SD in 

safety perception. In other words, when participants felt safer towards the agents, they were 

better able to utilize their dynamic capabilities, which consequently improved their joint task 

performance. The floodlight moderation analysis (Johnson-Neyman technique) further revealed 

that this interaction was significant when safety perception was within the range of 9.61 to 14.01 

(p < 0.05; see Figure 2). Outside of this range, the effect of response time slope on performance 

became non-significant, suggesting that safety perception plays a critical moderating role among 

those who perceive the agent safer. 

INSERT FIGURE 2 ABOUT HERE 

Similar to the results of agent-controlled trials, the same relationships are observed in 

human-controlled trials. A significant moderation effect was also observed between human 

dynamic capabilities and self-reported safety perception on agents (b = 5.867, t(23) = 2.999, p = 

0.007). Additionally, a main effect of the P300 component during human-controlled trials (b = 

1.907, t(23) = 2.293, p = 0.032), predicting collaboration performance. Participants who 

perceived the robot as safer (+1 SD in safety perception) displayed a stronger positive 
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relationship between their response time improvement and performance. The floodlight analysis 

further supports this interaction: when safety perception was within the range of 9.14 to 14.49 (p 

< 0.05). Taken together, the moderation effects observed in both agent-controlled trials and 

human-controlled trials support our H2. 

These findings underscore the importance of human observations of the collaborating 

robot's actions, as measured by emotional evaluation (LPP), attentional processing (P300), and 

behavioral adaptation of human dynamic capabilities. Together, these factors are crucial for 

optimizing human performance and ultimately enhancing collaboration outcomes. Moreover, 

perceived safety emerged as a key factor that strengthens the relationship between human 

dynamic capabilities and improved performance, reinforcing the notion that psychological 

factors, such as safety perception, can significantly impact human-robot collaboration. The 

results suggest that not only do the technical aspects of the interaction–often highlighted in 

previous studies–matter, but also the emotional and cognitive state of the participants, 

particularly their perception of safety, which can significantly influence their error-correction 

abilities. 

In sum, our analysis provides evidence that cognitive processes, reflected in the LPP and 

P300 brain components, along with behavioral adaptations of dynamic capabilities, are crucial 

for improving performance in error-prone and collaborative environments. Higher safety 

perceptions further amplify these effects, offering important insights for enhancing human-robot 

interactions in strategic settings. 

 

 

 



24 

5. DISCUSSION  

We integrated theories of uncertainty reduction and dynamic capabilities to create a new model 

that explains how and why collaboration performance between humans and autonomous agents 

varies. In addressing the how and why questions, we demonstrated that uncertainty reduction 

acts as an intervening mechanism through which passive information-seeking behaviors 

employed by humans influence performance. To our knowledge, there is no existing research 

that explicitly tests this effect. Through our conceptual model testing, we answered calls to 

utilize multiple theories in explaining human-agent interaction phenomena (e.g., Rocha et al., 

2023) and provided a stronger theoretical foundation for understanding how and why neural and 

behavioral factors at the individual level impact human-agent collaboration performance. 

We proposed that a reduction in uncertainty regarding the actions of the agent with which 

humans interact is a key mechanism underlying the relationship between human responses to the 

agent's behavior and collaboration performance. We found that a passive information-seeking 

strategy, particularly regarding positive information about the robot, influences collaboration. 

Several mechanisms may explain this outcome. First, positive reinforcement plays a significant 

role. When a robot makes a correct move, it enhances the human’s trust and confidence in the 

robot’s abilities. This positive reinforcement fosters smoother and more efficient collaboration 

(Ehrlich et al., 2023). Previous works showed in the context of human-agent co-adaptation, that 

positive reinforcement plays a greater role than negative for successful learning of consensus 

policies between human and agent (Ehrlich & Cheng 2018, 2019, Ehrlich 2020). 

A second factor may involve reduced cognitive load. When robots perform tasks 

correctly, it alleviates the cognitive burden on humans, as they do not need to intervene or 
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correct the robot. This leads to more seamless and less stressful collaboration (Mutlu et al., 

2016). These elements are all essential for effective collaboration. 

As predicted in H2, our findings indicate that the effect of human dynamic capabilities is 

moderated by perceived safety.  Perceived safety enables individuals to be more adaptable in 

their roles, allowing them to adjust their actions in response to the robot's behavior. In essence, 

since perceived safety is crucial for establishing trust, human dynamic capabilities are more 

effectively harnessed when there is trust in the robot. Therefore, ensuring both the physical and 

psychological safety of human collaborators is essential. 

 

Theoretical Implications  

Our interdisciplinary approach enhances our understanding of human and robot collaboration, 

which is inherently dynamic and context-dependent. It also helps us explore the mechanisms 

behind successful human-agent collaboration, revealing relationships among variables that may 

be obscured in studies examining AI and human roles in isolation rather than as part of a 

dynamic and interactive system.(Dogru & Reskin, 2020). While existing literature primarily 

focuses on how AI transforms production processes (Aron et al., 2011; Brynjolfsson et al., 2019; 

Meyer et al., 2014), understanding of human-AI collaboration for performance improvement 

remains limited. Our study addresses this gap by identifying key determinants of human-robot 

collaboration. We propose reframing AI as more than just a component of traditional production 

processes and adapting theories of human-human collaboration to the context of human-robot 

collaboration. 

We emphasize the heterogeneity of individual attributes in relation to AI, which enhances 

the theoretical foundation of a crucial emerging topic: whether AI complements or substitutes 
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human capital within firms (Choudhury et al., 2020; Fountaine et al., 2019). Between these two 

perspectives, there may be a middle ground where human users can orient the use of autonomous 

agents to their advantage. This middle ground can be beneficial for modeling human interaction 

with emerging AI-based machines. By incorporating individual differences to model human 

behavior, we can effectively illustrate how these dynamics operate in various important contexts 

(Lubinski, 2000). A deeper insight into which individuals are less likely to harbor negative 

perceptions of AI will help scholars and organizations better identify employees who can benefit 

from and complement the deployment of AI technologies. Treating human users as a 

homogeneous group undermines the potential of AI applications. In contrast, recognizing 

individual heterogeneity allows scholars and firms to pinpoint subgroups of employees with 

greater concerns about AI, enabling more targeted interventions. This approach fosters greater 

complementarity and reduces friction in adopting AI technologies in the workplace (Tong et al., 

2021). While previous studies have confirmed the significance of perceived safety in technology 

adoption (Zhang & Yu, 2020), this research focuses on the mediating effect of perceived safety 

in the relationship between individual dynamic capabilities and collaboration performance. By 

conceptualizing individual characteristics, perceived risk, and dynamic capabilities within the 

URT framework, we provide a clearer theoretical lens for understanding the mechanisms that 

contribute to successful human-agent collaboration. 

Our paper contributes to the literature by contextualizing and extending URT to the 

human-agent interaction domain. This study is one of the first to employ URT to explain how 

humans respond to the action of autonomous agents. We contribute to the theory by adding 

nuance to how individuals gather information. Our findings suggest that positive information 
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about the collaborating agent—rather than negative information—predicts collaboration 

performance when humans engage in passive information-seeking strategies. This enhances URT 

by recognizing that the quality and type of information sought can significantly influence the 

uncertainty reduction process. 

By highlighting the role of perceived safety in mediating the effect of humans’ dynamic 

capabilities on collaboration performance, our research identified a crucial psychological factor 

that influences how dynamic capabilities are utilized. This adds a new dimension to the existing 

literature, which often focuses more on organizational and strategic aspects. Our finding bridges 

the gap between psychology and dynamic capabilities, offering a more holistic understanding of 

how human factors impact the effectiveness of dynamic capabilities in collaborative settings. 

Together, these findings provide a nuanced understanding of the empirical scope of dynamic 

capabilities and highlight the need for further research that integrates diverse perspectives 

(Peteraf et al., 2013) and methods to explore causal relationships. As Whetten (1989: 492) stated, 

“temporal and contextual factors set the boundaries of generalizability, thereby defining the 

range of the theory.” We hope that our finding can serve as a foundation for future studies to 

explore other psychological boundary conditions and their impact on dynamic capabilities, 

further enriching the literature. 

In this study, our application of neuroscience offers insights that were previously 

challenging to uncover through traditional behavioral research in the field of strategic 

management. By analyzing data from the human brain, we were able to directly quantify the 

factors influencing collaboration performance, specifically focusing on humans’ passive 

information seeking strategies of observing the action of the interacting robot. Using a sample of 
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24 participants, we employ EEG to investigate ERP components relevant to error- and 

performance monitoring to evaluate humans’ real time observation of the correct/incorrect action 

of the interacting agent, a construct that is difficult to measure through conventional self-reported 

methods. In addition, a tightly controlled research design enabled us to more precisely isolate the 

nature of the uncertainty reduction mediating mechanism. Our multidisciplinary approach aligns 

with the diverse range of research methods and perspectives used in strategic management, 

acknowledging the intricate nature, depth, and complexity of strategic issues (Durand et al., 

2017).  

 

Practical implications 

Our findings illuminate organizational design decisions, including task allocations (Taylor, 1911) 

and coordination activities (Thompson, 1967), within the context of both humans and 

autonomous agents. Understanding how individuals perceive the actions of autonomous agents is 

essential for their design and regulation. Our findings suggest that when developing robots 

intended to collaborate with humans, variability in positive behavior should be considered, as 

humans appear sensitive to such variability. This sensitivity may, in turn, influence the quality of 

interactions and the acceptance of robots as interaction partners. In addition, recognizing the 

significance of perceived safety can guide the design of training programs and collaborative 

systems, optimizing human-robot interactions for improved performance. 

 

CONCLUSION 
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Our study represents a significant step in bridging neuroscience, strategic management, and 

robotics to foster scientifically grounded human-robot collaboration. To facilitate successful 

human-robot interaction, it is crucial to first understand and measure, using neuroscientific 

methods, how humans respond to robots. In this research, we demonstrate the neuroscientific and 

psychological mechanisms that can be evoked by a robot. It provides insights into the behaviors 

that robots should exhibit to elicit specific brain mechanisms. For effective collaboration, robots 

must activate automatic and often implicit processes within the human brain.  
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Figure 1. Experimental setup and human-agent collaboration task, with the agent embodied as 
red cursor on a computer screen, e.g. in study 1 (A), and the agent embodied as industrial robot 
manipulator, model UR10, e.g. study 2 (B). Illustration of the two collaboration scenarios (C and 
D). Figure adapted from Figure 1 in Ehrlich et al. 2023.  
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Figure 2. Interaction effects of spotlight and floodlight analyses.  
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