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Abstract

Music is a powerful medium for influencing listeners’ emo-
tional states, and this capacity has driven a surge of research
interest in AI-based affective music generation in recent
years. Many existing systems, however, are a black box which
are not directly controllable, thus making these systems less
flexible and adaptive to users. We present AffectMachine-
Pop, an expert system capable of generating retro-pop mu-
sic according to arousal and valence values, which can either
be pre-determined or based on a listener’s real-time emotion
states. To validate the efficacy of the system, we conducted a
listening study demonstrating that AffectMachine-Pop is ca-
pable of generating affective music at target levels of arousal
and valence. The system is tailored for use either as a tool for
generating interactive affective music based on user input, or
for incorporation into biofeedback or neurofeedback systems
to assist users with emotion self-regulation.

Introduction
Artificial intelligence (AI)-based music generation has
rapidly gained traction in recent years, driven by advances
in machine learning, computational creativity, and the grow-
ing availability of music datasets. Such systems have broad
applications, from enhancing artistic creativity and aiding
music composition through co-creative systems, to provid-
ing interactive entertainment in gaming and VR scenarios,
and even person-centered, adaptive therapeutic applications
(Ji, Luo, and Yang 2020; Agres et al. 2021; Dash and Agres
2024; Civit et al. 2022; Wang et al. 2024).

Advancements in generative AI, specifically large lan-
guage models (LLM) and natural language processing
(NLP) technology, have led to groundbreaking advance-
ments in the field. Generative models such as AudioLM
(Borsos et al. 2023), MusicLM (Agostinelli et al. 2023), and
MusicGen (Copet et al. 2024) can be prompted with either
text descriptions or melodies to produce high-quality audio
samples that mimic diverse genres, styles and sentiments.
Aside from text-based prompting, previous approaches have
also achieved music generation by sampling latent spaces
encoding distinct musical attributes, styles, and sentiments
(Tan and Herremans 2020; Gupta et al. 2023).
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Within the field of music generation, there has been sig-
nificant interest in AI-based affective music generation (AI-
AMG) systems, which aim to create music with specific
emotional qualities (Grekow and Dimitrova-Grekow 2021;
Sulun, Davies, and Viana 2022; Cui, Sarmento, and Barthet
2024; Dash and Agres 2024). Through their ability to in-
duce, mediate and enhance listener’s emotional states, AI-
AMG systems widen the scope of algorithmic music gener-
ation by enabling tailored emotional engagement in appli-
cations such as mental health interventions (Elliott, Polman,
and McGregor 2011; Stewart et al. 2019; Agres et al. 2021),
assistive technology (Hagerer et al. 2015), and physical re-
habilitation (Ashoori, Eagleman, and Jankovic 2015).

While generative AI has brought about important ad-
vancements in the development of AI-AMGs, specifically
regarding the high quality and naturalness of the generated
music, most approaches relying on generative AI (especially
neural network-based approaches) suffer from several draw-
backs, namely: 1) the generation of musical samples from
generative AI models is typically performed at the song
level and usually requires several seconds up to minutes;
2) near real-time inference for instantaneous music gener-
ation is rare; and 3) the music generation process is non-
deterministic, rendering fine-grained control of the affective
qualities of the music challenging, and the expected emo-
tional impact on the listener non-trivial. Furthermore, the
majority of generative AI models rely on pre-existing mu-
sic for training, which has sparked controversies surround-
ing copyrighted training data, making approaches not rely-
ing on pre-existing music increasingly attractive.

These factors render state-of-the-art neural networks-
based generative AI music systems sub-optimal for real-time
music generation, which is essential for interactive enter-
tainment in gaming and VR scenarios, as well as human-
in-the-loop adaptive therapeutic systems. The challenge of
narrative adaptability (Dash and Agres 2024) – the abil-
ity of AI-AMG systems to instantaneously generate music
seamlessly adapting to a given emotional narrative or se-
quence, while still maintaining musical coherence – has not
been explored in great depth. However, real-time adapta-
tion of musical output, which can in turn influence the lis-
tener’s emotions, is a key area given music’s significant im-
pact on human emotion (Juslin, Sloboda et al. 2001). Few
systems have addressed this challenge. For example, En-



gels, Tong, and Chan (2015) employed hierarchical Markov
models to generate original music for video games, capable
of mimicing the variations in musical structure often found
in longer human-composed pieces. Similarly, Ehrlich et al.
(2019) developed a rule-based probabilistic music genera-
tion algorithm as part of a closed-loop brain-computer in-
terface system. The algorithm generates a stream of MIDI
events, with the type and occurrence of events modulated
by emotional arousal and valence parameters. Recent work
by Agres, Dash, and Chua (2023) introduced an AI-AMG
system called AffectMachine-Classical, capable of creat-
ing non-repetitive, continuous affective music in a classical
style. This system was validated in a study with human par-
ticipants, confirming the emotional qualities of the generated
musical and supporting its utility for the aforementioned use
cases.

Building upon AffectMachine Classical, we present here
AffectMachine-Pop, a novel AI-AMG system designed to
generate continuous affective music in a pop style. Com-
pared with classical music, pop music is characterized by
simpler, more repetitive forms that resonate more broadly
with the general public (Chan, Qu, and Mak 2009). How-
ever, generating multi-track pop music presents the technical
challenge of maintaining melodic, harmonic and rhythmic
coherence across several musical layers (Ren et al. 2020;
Zhu et al. 2018). Therefore, unlike most modern pop music
AI-AMGs, which predominantly rely on data-driven meth-
ods and high-performance AI architectures, e.g. (Ren et al.
2020; Huang and Yang 2020), our approach takes a differ-
ent path. Existing pop systems often depend heavily on pre-
existing music datasets and suffer from limited transparency,
functioning as black-box models. In contrast, our method
features a compositional framework guided by established
musical rules, deliberate instrumentation, and precise tim-
bral arrangements. These elements are manually refined by
expert musicians and composers to achieve a balance of
technical accuracy and artistic expressiveness. In addition,
our approach features near real-time adaptability, enabling
the system to seamlessly adjust its affective content based
on the user’s inputs or physiological states, by traversing the
valence-arousal space (Russell 1980) while preserving mu-
sical and stylistic coherence. The system generates musical
samples with controllable emotional qualities, i.e., music at
specific levels of arousal and valence, as demonstrated by
empirical evidence from the listening study presented here.

Below we describe AffectMachine-Pop, our expert system
for affective automatic music generation in a popular music
style. We also highlight the ways in which the system com-
pares and differs from AffectMachine-Classical. Finally, we
present the methodology and results of a listening study con-
ducted to validate the system’s ability to produce music at
different target levels of arousal and valence.

AffectMachine-Pop system description
Here we describe the parameters and design of our sys-
tem, AffectMachine-Pop, for computationally-generating af-
fective pop music. Unlike the majority of AI-AMG systems,
which have focused on generating music in a classical genre
(e.g., Agres, Dash, and Chua (2023); Ehrlich et al. (2019);

Wallis et al. (2011)), the present system composes music in
a retro-pop genre. This makes it particularly well-suited for
middle-aged and older adults, and anyone who enjoys pop-
ular music from the 60s and 70s.

Figure 1 depicts the basic building blocks of our system.
There are four major components, namely, Harmonic pa-
rameters, Timbral & loudness parameters, Pitch character-
istics of voices, and Time & rhythm parameters. Each of
these blocks contains different musical rules for tailoring
features of the music (i.e., tempo, chord, etc) to convey spe-
cific levels of emotion. The emotion parameters (valence and
arousal values) are given as input to the system, and then the
system generates emotional music (output) through a com-
plex interplay between these blocks. In the following sec-
tion, we describe each of these blocks in greater detail.

We focus on highlighting the differences between
AffectMachine-Pop and AffectMachine-Classical, which
has already been described in-depth by Agres, Dash, and
Chua (2023). Where the designs overlap, we offer only a
brief summary.

Emotion inputs
Russell’s (1980) two-dimensional model of affective space,
which represents emotions along the dimensions of arousal
(intensity or energy level) and valence (degree of pleas-
antness) (Russell 1980), has inspired many AI-AMG sys-
tems (Dash and Agres 2024; Huang, Chen, and Yang 2024;
Agres, Dash, and Chua 2023; Ehrlich et al. 2019), includ-
ing AffectMachine-Pop. This model has been widely adopted
(and adapted) in emotion research, as it allows for the repre-
sentation of a broad range of emotions, from high-arousal,
positive states (e.g., joy) to low-arousal, negative states
(e.g., sadness). By mapping musical features to this affective
space, AffectMachine-Pop can generate music that meets
target arousal and valence levels, which are either prede-
termined, or based on real-time inputs, such as physiolog-
ical data reflecting a listener’s emotion states (such as HR or
EEG data).

Harmonic parameters
Mode AffectMachine-Pop uses a bespoke probabilistic
chord progression matrix that takes inspiration from retro-
pop music, e.g., English and Mandarin pop songs from the
1960s-1970s, such as The Beatles’ Hey Jude and Theresa
Teng’s Thousands of Words. Specifically, the chord progres-
sion matrix can be modeled as a directed probabilistic graph,
G(V,E) with vertices V and edges E. Each vertex repre-
sents a chord, and edges represent transition probabilities
between chords. The generated chord sequence is guided by
a pre-defined sequence or array of valence values; each va-
lence value corresponds to one bar in the progression, such
that the array’s length matches the number of bars in the
generated music. The chords and probabilities in our ex-
pert system were tuned by hand based on previous empirical
findings, as well as the musical insights from our interdis-
ciplinary team of musicians and composers. Figure 2 shows
a representation of our chord progression algorithm as a di-
rected probability graph for a 4-bar musical excerpt with a
valence parameter of [0.1, 0.8, 0.7, 0.8].



Figure 1: Architecture of AffectMachine-Pop.

Figure 2: Sample Chord Progression as a probabilistic graph.

The musical structure governing the length of the gener-
ated chord progressions differs from that of AffectMachine-
Classical. In AffectMachine-Pop, the music follows a 32-
bar musical structure comprised of two 8-bar sections (la-
belled section “A” and “B”, as per convention) that repeat in
an AABB pattern. (This AABB pattern is distinct from the
AffectMachine-Classical system.) Each bar in the structure
is associated with a fixed chord function, while the specific
chords for the bar and their associated transition probabili-
ties are determined by the valence level.

Timbral and loudness parameters
Instrumentation AffectMachine-Pop uses five virtual in-
struments, played over different audio tracks, to generate af-
fective polyphonic music that resembles “retro” pop music
from the 1960s-1970s. The five instruments are a percus-
sion kit, bass guitar, electric guitar, violin section and French
horn. Each instrument is played using a single audio track
in the DAW (Ableton Live) except for the electric guitar,
which is played back over two audio tracks. The violin sec-
tion and French horn receive identical MIDI information and
play the main melodic line. The doubling of the violin sec-
tion by French horn helps to smooth and balance the timbre
and enhance the prominence of the melodic line. The elec-
tric guitar provides harmonic accompaniment by strumming
chords, which are played back on one audio track. At lower
levels of arousal (aro <0.7) where the music is slower and
less dense with minimal percussion, a plucked electric guitar
is also used to add texture, to convey a desired level of va-
lence when note activations were very sparse. The strummed
and plucked electric guitars are recorded on separate audio
tracks to facilitate audio mixing.

Velocity Volume (or dynamics) is frequently used to con-
vey emotional expressiveness in music (Gabrielsson and
Juslin 2003). Increased sound levels are associated with
higher-arousal emotions such as “happy” or “angry”, while
lower sound levels tend to be associated with lower-arousal
emotions such as “sad” (Bresin and Friberg 2011). To enable
real-time adaptation of volume, we mapped arousal values to
attack velocity in MIDI following Eq. 1. Attack velocity in-
dicates the force with which a note is struck; aside from con-
trolling volume, higher velocity values also produce brighter
and harder timbres which contribute to the perception of in-
creased arousal (Agres, Dash, and Chua 2023).

velocity = 60 + (aro ∗ 15) (1)

Pitch characteristics of voices
Voice leading Voice leading – the linear progression of
melodic voices and their interaction to create harmonies
– was added to the system for musical sophistication and
coherence. Separate voice leading logic was developed for
each instrument and track in AffectMachine-Pop. The bass
guitar plays the roots and fifths of the current chord, a com-
mon note pattern used by bass players in pop music. The root
is selected with higher probability (p = 0.9) on the first beat
of each bar to help establish the chord. Next, the plucked
electric guitar is used primarily to add texture at lower lev-
els of arousal; hence, it plays a randomly selected sequence
of chord tones from the current chord (with all chord tones
being equiprobable). This allows the current chord quality
to be expressed clearly even at lower levels of arousal with
little additional dissonance.

The strummed electric guitar provides harmonic progres-
sion, and its voice leading logic follows the heuristic out-
lined in Wallis et al. (2011), which is that musicians tend to
voice new chords in a manner that is as similar as possible to
the previous chord, in terms of interval and placement on the
instrument. We implement this by selecting the voicing for
the subsequent chord that is least dissimilar to the current
chord (details of the dissimilarity calculation can be found
in Agres, Dash, and Chua (2023)).

The main melodic line is played by the violin section
and French horn. For these instruments, we employ a mix
of composed melodic motifs and probabilistic voice leading
logic. Specifically, the instruments play a melodic pattern



probabilistically determined by the voice leading logic for
the first four bars of each 8-bar section. Like AffectMachine-
Classical, this voice leading logic is encoded in the form
of transition matrices. However, in AffectMachine-Pop, we
divide the valence range into low (V ≤ 0.5) and high va-
lence (V > 0.5) regions and compose one matrix for each
region to generate appropriate melodies for each level of
valence. In the second four bars, the instruments play a
probabilistically-selected composed rhythmic motif. The set
of composed rhythmic motifs were developed with refer-
ence to representative pieces from the Western and mandarin
retro-pop music canon during the 1960s-1980s, and include
typical motifs such as pentatonic patterns and arpeggiation.

Pitch register Generally, higher pitches tend to be associ-
ated with positive emotions such as excitement and serenity
(Collier and Hubbard 1998), while lower pitches correlate
with negatively-valenced emotions such as sadness. We use
chord inversions to gradually shift the pitch register of the
strummed and plucked electric guitar. Regardless of the cur-
rent level of valence, there is always a constant probability
(p = 0.6) that the chord voicing does not change, to prevent
the pitch register of the music from increasing or decreasing
too quickly. As valence increases, the probability that the in-
version of the current chord voicing increases by one (e.g.,
from root to first inversion) also increases according to the
formula p(inv+ |inv ̸= 0) = val, while the probability that
the inversion of the current chord voicing decreases by one
(e.g., from first to root inversion) decreases according to the
formula p(inv − |inv ̸= 0) = 1− val.

Register is not relevant for the percussion instrument, and
for the remaining instruments (French horn and violin sec-
tion), the register is fairly consistent as they return to the
composed melodic motive in the second four bars of each
8-bar section, and there are typically no obvious register
changes due to voice leading logic in the remaining four
bars.

Time and rhythm parameters
Rhythm We composed a set of three equiprobable 8-bar
rhythmic patterns for the bass guitar, and randomly se-
lect a new rhythmic pattern at the beginning of each 8-bar
section. For the strummed electric guitar, we divided the
arousal range into three regions: low (aro < 0.40), mod-
erate (0.4 ≤ aro < 0.70) and high (aro ≥ 0.70), and
composed several rhythmic patterns (and their associated
probabilities) for each region. A new rhythmic pattern is se-
lected for strummed guitar at the beginning of each bar. For
the percussion kit, we composed several 8-bar rhythmic pat-
terns that gradually reduce in density as arousal decreases,
with greater use of quieter instruments and techniques such
as rim clicks. A new rhythmic pattern for percussion is se-
lected at the beginning of each 8-bar section. A single pat-
tern was composed for low (aro ≤ 0.30) and moderate
(0.3 < aro ≤ 0.70) levels of arousal, while a set of three
rhythmic patterns were composed for high (aro > 0.70) lev-
els of arousal.

For the main melodic instruments (string section and
French horn), we employ a mix of composed rhythmic mo-

tives and rhythmic roughness. Specifically, during the first
four bars of each 8-bar section, the instruments play a rhyth-
mic pattern probabilistically determined by the roughness
parameter, which is a measure of how irregular the rhythm of
a piece of music is. Music with smooth, regular rhythms are
typically perceived as higher in valence and lower arousal.
In AffectMachine-Pop, we use note density as a proxy for
rhythmic roughness (Wallis et al. 2011) in the following
manner: as arousal increases, roughness decreases in a linear
fashion and note density increases. For example, if rough-
ness is set to 0, each bar would be populated with eight notes
of equal length. Because this tends to sound overly dense
(since the tempo is also faster at higher levels of arousal),
we set a lower bound for the roughness parameter.

In terms of the last four bars of each 8-bar section, the in-
struments play a selected composed rhythmic motive. We di-
vided the arousal range into three regions: low (aro < 0.30),
moderate (0.3 ≤ aro < 0.60) and high (aro ≥ 0.60), and
composed a set of three equiprobable rhythmic patterns for
each region. Finally, rhythmic patterns for the plucked elec-
tric guitar are determined probabilistically by the roughness
parameter.

Tempo Tempo refers to the rate or speed of the music,
often measured in terms of beats-per-minute (bpm). In our
system, tempo is controlled by the arousal value. Specifi-
cally, tempo is governed by a logarithmic relationship with
arousal, and has a range of tempo ∈ [36, 130]. We found
the logarithmic relationship and limited range to be useful,
as changes in tempo were more perceptually apparent when
the tempo was lower, and using overly fast tempos sounded
unpleasant and unnatural.

AffectMachine-Pop Listening study
To evaluate the effectiveness of AffectMachine-Pop in gen-
erating music at specific levels of arousal and valence, we
conducted a music listening study. This study assesses the
system’s ability to convey the intended emotional content
of the generated music to listeners (i.e., perceived emotion).
Future work will examine AffectMachine’s capacity to reli-
ably induce emotions in listeners.

Musical Stimuli Generation AffectMachine-Pop is de-
signed to compose music that conveys emotions correspond-
ing to any point on the valence-arousal (V-A) plane. To cap-
ture a range of different emotions, we generated musical
excerpts from 13 different points on the V-A plane. These
points were selected to span a variety of different emotions,
including the corners, the middle of each quadrant, and the
neutral point at the centre of the space. For more details on
the selection of points in A-V space, please refer to Agres,
Dash, and Chua (2023). To minimize bias towards any single
musical excerpt and improve generalizability, three musical
stimuli were generated for each of these 13 points, result-
ing in a total of 39 musical excerpts. The average duration
of the excerpts was 32.6 seconds. The musical stimuli were
composed based on a 4-bar, 8-bar, or 16-bar progression.
For stimuli corresponding to low arousal levels, the duration
was limited to 4 bars (ranging from 27-34 sec per stimulus).



Stimuli with higher levels of arousal contained 8 or 16 bars,
as 4 bars were too brief for these stimuli with a faster tempo.

Experimental Procedure We conducted the listening
study with 24 participants (average age = 23.0 yrs, SD =
2.6 yrs; male = 9, female = 15). All participants were given
verbal and written instructions about the study prior to pro-
viding their written consent. The study was approved by the
Institutional Review Board (IRB) of the National University
of Singapore (NUS).

The experiment took place in a quiet room free from
audio-visual distractions. The experimenter explained the
procedure to each participant, who then provided written in-
formed consent to participate in the study. Participants com-
pleted the study individually. Before starting the listening
task, participants provided demographic information such as
their age, gender, and ethnicity.

At the beginning of the study, participants listened to two
practice trials to become familiar with the procedure. Subse-
quently, the 39 musical excerpts were presented in random-
ized order. After listening to each stimulus, participants were
asked to indicate their perceived emotion, i.e., the emotion
they perceived in the musical excerpt. Responses were col-
lected using the Self-Assessment Manikin (SAM), a visual
9-point scale ranging from “Very unpleasant” (1) to “Ex-
tremely pleasant” (9) for valence, and from “Calm” (1) to
“Excited” (9) for arousal. Participants were allowed to listen
to each stimulus only once, but could take as much time as
needed to provide their ratings. The experiment lasted ap-
proximately 40 minutes, and participants were compensated
with $ 6 SGD for their time.

The valence and arousal ratings collected across partic-
ipants were then analyzed to evaluate the efficacy of our
system in conveying specific emotions through its generated
music. The results of the analyses are presented below.

Results and Discussion

To evaluate the efficacy of AffectMachine-Pop in generat-
ing music that expresses a desired emotion, we analyzed
the user ratings collected during the listening study. The pri-
mary goal was to determine whether the music generated by
AffectMachine-pop successfully conveys the intended lev-
els of valence and arousal to listeners. Specifically, we per-
formed a comparative analysis between the average user rat-
ings for the musical stimuli and the valence or arousal pa-
rameter settings used during the music generation process.
First, we normalized the perceptual ratings for each listener
using Eq. 2. Here, the MaxV alence refers to the maximum
possible valence rating (i.e., 9) and MinV alence refers to
the minimum possible valence rating (i.e., 1). A similar nor-
malization procedure was applied for arousal. The resulting
normalized valence and arousal ratings, which range from
0 to 1, were used for further analysis. In the remainder of
the article, the normalized valence and normalized arousal
ratings will be referred to as valence and arousal ratings, re-
spectively.

NormalizedV alence =
RatedV alence −MinV alence

(MaxV alence–MinV alence)
(2)

Comparative Analysis of User Ratings To access
whether our system accurately expresses the desired emo-
tions through its generated music, we performed a compar-
ative analysis between the mean emotion ratings and the va-
lence and arousal settings used to generate the music. For
example, the mean arousal ratings for stimuli generated with
settings valence, arousal = [{0,1}, {0.5,1}, {1,1}] were used
to evaluate the system’s performance when arousal was set
to its maximum value. Figure 3 presents the average ratings
along with their respective standard errors.

As shown in the figure, the valence ratings exhibit a pos-
itive linear trend but tend to plataeu when V >= 0.75.
According to literature, the middle range of psychometric
rating scales often receives a higher density of responses,
whereas the extremes of the scale typically receive fewer re-
sponses (Leung 2011). This phenomenon could explain why
raters found extreme values of valence, such as valence val-
ues > 0.75 and < 0.25, to be less distinguishable.

In contrast, arousal values showed better correspondence
with the average user ratings across most of the scale, ex-
cept around an arousal value of 0.5. This may be due to the
fact that the excerpts were generated using three random in-
stantiations (e.g., these particular stimuli may have deviated
from the system’s typical output at A = 0.5). It is also possi-
ble that the tempo around A = 0.5 is too slow. Future work
will explore a faster tempo for moderate levels of arousal,
and will test a larger number of excerpts.

To quantify the positive correlation between average
user ratings and parameter settings, we performed linear
regression-based curve fitting. The coefficient of determina-
tion was R2 = 0.93 (p < 0.01) for valence and R2 = 0.86
(p < 0.05) for arousal, indicating good correspondence be-
tween user ratings and target values and thereby confirming
the effectiveness of our system to convey the target emotion.

Figure 3: Mean arousal (a) and valence (b) ratings (error bars
represent standard error).

We also investigated whether the perception of arousal is
influenced by variations in valence and vice versa. To this
end, we examined the dependence of perceived emotion user



ratings on both the valence and arousal parameter settings si-
multaneously. Figure 4 illustrates this relationship, showing
the interpolated average arousal ratings (Fig 4a) and valence
ratings (Fig 4b). The stars correspond to the 13 points in the
valence-arousal plane used to generate the musical stimuli.

Generally, there is a strong correspondence between pa-
rameter settings and emotion ratings. As shown in the fig-
ure (Fig 4b), perceived valence is lower than the intended
valence parameter setting (for values of V > 0.8) when
arousal is set below < 0.6. This implies that excerpts in-
tended to convey high valence are perceived as having only
moderate valence when arousal value is low. Conversely,
stimuli generated at low valence settings (values of V < 0.2)
are perceived to express higher valence when arousal is set
high (values of A > 0.7). This suggests that music intended
to express low valence is perceived as having higher valence
when the arousal value is higher. These observations can be
partially attributed to the effect of tempo in generated mu-
sic, where slower tempos are associated with lower arousal
values and vice versa.

In contrast, we observed a more consistent correspon-
dence between the arousal parameter settings and arousal
ratings (except for A = 0.5), and found that the arousal
ratings show no dependence on valence settings. This ob-
servation aligns with findings from the literature (Wallis
et al. 2011), which reported an asymmetrical “crossover” ef-
fect between arousal and valence. Specifically, Wallis et al.
(2011) observed that while perceived valence correlates with
intended arousal, perceived arousal does not significantly
correlate with intended valence. The observed crossover ef-
fect is most likely due to the non-orthogonal relationship
between the valence and arousal dimensions in relation to
one or more musical features. Alternatively, it could also
arise from uncontrollable factors, such as cultural influences.
Nevertheless, this crossover effect does not greatly impact
the intended functioning of our systems, as the results within
each dimension align well with expectations.

These findings confirm the potential of AffectMachine-
Pop to reliably generate emotion-infused music that ex-
presses varying levels of arousal and valence in a controlled
manner. However, we note that the results may be influenced
by the limited sample size, which could affect generalizabil-
ity. Further in-depth investigations will be useful to expand
on the above observations.

Conclusion
We have presented AffectMachine-Pop, an expert system de-
signed for generating affective music in a pop style. This
system is capable of real-time music generation, offering a
novel and innovative tool for creating music tailored to con-
vey specific emotion states.

In a music listening study, we investigated whether the
system is able to generate music that effectively expresses
desired emotions (specified via specific levels of arousal
and valence). The results showed a strong correspondence
between the given valence and arousal parameter settings
and listeners’ averaged valence and arousal values, with
R2 = 0.93 for valence and R2 = 0.86 for arousal. These
results confirm the system’s effectiveness.

Figure 4: Mean (interpolated) arousal (a) and valence (b)
ratings as a function of the valence and arousal parameters.
Vertical color bars represent the colors corresponding to dif-
ferent values of normalized average ratings over the range
0.1 to 0.9.

Future work will evaluate the system’s ability to induce
emotions in listeners, extending beyond the current focus on
perceived emotion. Additionally, we aim to address current
limitations, including the need for a larger and more diverse
group of participants. The long-term goals of this line of re-
search are to establish the system’s potential to reliably gen-
erate affective music, and explore its applications in emotion
self-regulation. One promising future direction is the inte-
gration of AffectMachine into a Brain-Computer-Interface
(BCI), which aims to assist users in achieving desired emo-
tional or mood states through adaptive, real-time music gen-
eration guided by their neural activity.
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