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ABSTRACT

Healthcare robotics requires robust multimodal perception and reasoning to ensure safety in dynamic
clinical environments. Current Vision-Language Models (VLMs) demonstrate strong general-purpose
capabilities but remain limited in temporal reasoning, uncertainty estimation, and structured outputs
needed for robotic planning. We present a lightweight agentic multimodal framework for video-based
scene understanding. Combining the Qwen2.5-VL-3B-Instruct model with a SmolAgent-based
orchestration layer, it supports chain-of-thought reasoning, speech—vision fusion, and dynamic tool
invocation. The framework generates structured scene graphs and leverages a hybrid retrieval module
for interpretable and adaptive reasoning. Evaluations on the Video-MME benchmark and a custom
clinical dataset show competitive accuracy and improved robustness compared to state-of-the-art
VLMs, demonstrating its potential for applications in robot-assisted surgery, patient monitoring, and
decision support.

1 Introduction

Robotics in healthcare has emerged as a critical domain where perception, reasoning, and safe decision-making intersect
with high-stakes clinical applications. From robot-assisted surgery [1], to autonomous patient monitoring [2]], and
collaborative care robots [3]], the demand for systems that can robustly interpret complex multimodal environments
continues to grow. A central requirement across these applications is scene understanding—the ability to identify
objects, infer spatial and temporal relations, and generate structured representations that inform safe robotic actions [4].

Recent advances in Vision-Language Models (VLMs) such as Llava [5] demonstrate strong multimodal reasoning
capabilities. These systems have achieved remarkable performance in tasks such as visual question answering, image
captioning, and document analysis. However, their application in robotics, especially in healthcare, faces critical
challenges. First, most VLMs operate as monolithic end-to-end pipelines, limiting flexibility, explainability, and
integration with robotic control loops [6]. Second, temporal and spatial reasoning remains underdeveloped, hindering
the accurate interpretation of dynamic surgical or clinical environments [7]]. Third, the lack of structured outputs (e.g.
scene graphs) complicates downstream integration into robotic planning frameworks [5. [8]]. Finally, deployment in
clinical workflows is often obstructed by the high computational cost of large proprietary models and unresolved
concerns about data privacy [9].

Within the healthcare domain, these shortcomings are especially problematic. For example, surgical robots require
interpretable scene representations to coordinate tool trajectories with evolving anatomical contexts. Assistive robots
in hospitals must combine perception with reasoning to safely navigate dynamic environments involving patients and
caregivers. Clinical decision-support robots further demand uncertainty estimation and fallback strategies to avoid
unsafe actions under ambiguity.

To address these challenges, we present a leightweight modular agentic multimodal framework designed for video-
based scene understanding in clinical and robotic contexts. By integrating the Qwen2.5-VL-3B-Instruct model with a
SmolAgent-based orchestration layer, our framwork combines chain-of-thought reasoning, speech-vision fusion, and
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Figure 1: System architecture. (1) VisionQA (highlighted in red), (2) SceneGen (highlighted in green), and (3) GraphQA
(highlighted in blue). Each workflow represents a distinct method in the system’s pipeline, with which a user can

interact.

structured scene graph generation. In addition, a hybrid retrieval mechanism (LightRAG [10]) enables both efficient
and interpretable knowledge integration. Together, these components aim to bridge the gap between raw perception
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and symbolic planning, enabling healthcare robots to act more safely, transparently, and adaptively in high-stakes
environments.

2 RELATED WORK

Vision-Language Models (VLMs) such as CLIP [[11], Flamingo [12]], and GPT-4V [13]] demonstrate strong multimodal
reasoning, but remain limited in temporal and spatial reasoning [[8]]. More recent approaches like GPT4Scene [14]]
or PRIME AI [[15] extend VLMs toward video and surgical contexts. However, these remain largely monolithic
architectures with limited adaptability to robotic pipelines.

Agent-based frameworks such as ReAct [16] and SmolAgents [17] emphasize modular reasoning, planning, and
dynamic tool invocation. In video reasoning, approaches like Agent-of-Thoughts [18]] and ViQAgent [19] demonstrate
that incorporating external verification and multi-step reasoning improves robustness and interpretability. While
promising, these systems are rarely applied to high-stakes domains such as healthcare robotics, where uncertainty
handling and safety mechanisms are paramount [9].

Scene graphs provide a structured and interpretable representation of objects and their relations, making them valuable
for bridging perception and robotic control [20]. Recent work in multimodal scene graph generation has shown
strong potential in human-robot collaboration tasks, allowing robots to ground instructions and adapt to dynamic
environments [S]]. Despite these advances, scene graphs remain underutilized in medical robotics, where they could
support interpretable surgical guidance, workflow modeling, and safe planning.

Robotics in healthcare spans from robot-assisted surgery [21] to collaborative assistive systems [3[]. Evaluation
benchmarks tailored for clinical domains are emerging, such as MedFrameQA [22], which emphasizes temporal
reasoning over medical imagery. These efforts highlight the need for domain-specific testing to ensure safety and
reliability. Yet, most VLMs and multimodal agents are not systematically validated in clinical robotics contexts, leaving
a gap for frameworks designed with healthcare applicability in mind.

In summary, prior research has advanced multimodal perception, agent-based reasoning, and structured scene repre-
sentations. However, existing approaches remain either monolithic, poorly adapted to dynamic robotic pipelines, or
insufficiently validated in healthcare contexts.

3 Methods

We propose a lightweight agentic multimodal framework for video-based scene understanding in healthcare robotics. The
framework bridges perception and planning by combining a vision—language backbone, agentic orchestration, structured
scene graph generation, and hybrid retrieval. Figure I]illustrates the system. Our framework was designed with two key
considerations in mind: (i) supporting clinicians and robotic systems in dynamic, safety-critical environments, and (ii)
ensuring interpretability and traceability of decisions, both of which are essential for deployment in healthcare contexts.

3.1 System Overview

Our framework is organized around three complementary workflows: VisionQA, SceneGen, and GraphQA. VisionQA
provides direct natural language interaction with video data, enabling clinicians to pose questions about ongoing
procedures. SceneGen automatically transforms raw multimodal outputs into structured scene graphs, which serve
as interpretable world models. GraphQA extends this capability by enabling reasoning directly over the structured
representation, supporting symbolic queries such as tool-object interactions or temporal event ordering.

These workflows are orchestrated by a lightweight agent layer that coordinates tasks, manages external knowledge
access, and ensures consistent outputs. The modularity of this design directly addresses the high uncertainty and
variability of clinical environments, where new tools, procedures, or workflows may appear unexpectedly. Moreover,
the explicit orchestration enhances adaptability, enabling our framework to serve as both a perceptual assistant and a
planning interface for robotic systems.

3.2 Vision-Language Backbone

At the core of our framework lies the Qwen2.5-VL-3B-Instruct model [23]], a transformer-based vision—language
system optimized for multimodal instruction following. The model was selected after a systematic evaluation of
eight contemporary VLMs (e.g., BLIP, Molmo, Moondream?2, LLaVA-NeXT). Selection criteria included accuracy,
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multimodal capability, computational efficiency, and maintainability. Qwen2.5-VL-3B demonstrated the best trade-off
between performance and resource demands, outperforming lighter models while avoiding the prohibitive VRAM
requirements of larger ones (7B+).

The backbone employs an adaptive frame sampling strategy, selecting key frames based on motion cues and scene
changes, thereby avoiding redundant computation while capturing clinically relevant events (e.g., introduction of a
surgical tool). Each frame is paired with a task-specific prompt and processed to yield grounded captions, object
descriptions, and candidate relations. To preserve temporal context, our framework employs a temporal memory buffer
which aggregates output from consecutive frames. This mechanism enables reasoning about evolving surgical events
(e.g., tool usage before vs. after incision) without requiring large-scale video pretraining, thus reducing computational
overhead.

3.3 Multimodal Processing

To support audiovisual comprehension, our framework further integrates speech-to-text (STT) via Whisper [24]],
combined with MoviePy [235] for audio extraction and SpeechRecognition [26] for interface standardization. This
allows seamless integration of verbal instructions, procedural commentary, and background conversations into the
multimodal reasoning pipeline. Whisper’s robustness in noisy environments ensures that domain-specific vocabulary is
reliably captured, while GPU acceleration enables near real-time transcription.

The processing pipeline applies several optimizations to maintain efficiency in clinical contexts: (i) Dynamic resolution
handling (feature of the Qwen model) adapts input sizes to available GPU memory. (ii) FlashAttention-2 reduces
inference latency and VRAM consumption. (iii) Caching mechanisms prevent redundant model loading during
prolonged sessions. (iv) Accelerate-based multi-GPU execution supports scalability.

Together, these steps allow our system to process multi-minute video sequences on mid-range GPUs while maintaining
performance.

3.4 Agentic Orchestration

While VLMs demonstrate strong pattern recognition, they often fail on multi-step reasoning or knowledge-intensive
tasks. Our framework addresses this through a SmolAgent-based orchestration layer [17], which follows the ReAct
paradigm [16]. Instead of producing a single response, the agent alternates between explicit reasoning steps and tool
invocations.

This design provides three key advantages: (i) Modular Task Decomposition: Breaks complex tasks into manageable
subtasks for better adaptability and robustness, (ii) Dynamic Tool Activation: Activates only necessary tools based on
task requirements, ensuring efficient resource use, and (iii) explicit uncertainty handling, where fallback strategies are
triggered if confidence in model output is low.

By externalizing reasoning, the orchestration layer improves transparency and supports auditable interaction protocols,
which are essential for robotic systems intended to assist in high-stakes environments such as operating rooms.

3.5 Scene Graph Generation

Structured representations are generated through the SceneGen module. Detected entities from VisionQA outputs are
mapped to canonical object categories (e.g., “scalpel,” “forceps,” “tissue region”) using the Mistral small 3.1 LLM.
Relations are inferred using a hybrid approach: a lightweight attention-based classifier for spatial relations (e.g., “above,”
“next to”) and rule-based templates for temporal sequences (e.g., “before,” “after”).

The resulting scene graph represents objects as nodes and relations as labeled edges, providing an interpretable
abstraction of the environment (see example in Figure [2). These graphs not only facilitate explainable outputs for
clinicians but also serve as state representations for robotic planners, allowing robots to align actions with the semantic
structure of the surgical field. By bridging perception with symbolic representations, our framework addresses one of
the core challenges in healthcare robotics: transforming raw video input into actionable, structured knowledge.

3.6 GraphQA: Structured Reasoning

Beyond perception, our system enables structured reasoning through the GraphQA module. For example, the query
“Which instrument most recently contacted the tissue?” is translated into a search for edges linking tools and tissue
nodes with the latest temporal label. This process grounds abstract questions in explicit graph operations, ensuring
answers are both interpretable and verifiable.
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Figure 2: LightRAG based scene graph generation for structured and actionable knowledge representation.

This structured reasoning has two benefits: (i) robustness against hallucinations common in large language models, and
(ii) traceability, since results can be directly linked to graph elements. This makes GraphQA particularly valuable in
clinical robotics, where decision support must be auditable and defensible to meet safety and regulatory requirements.

3.7 Hybrid Retrieval with LightRAG

Our system further integrates LightRAG [10], a retrieval framework that combines dense vector similarity with
graph-based indexing. For instance, when asked about the recommended handling of a specific tool, the system
retrieves relevant surgical guidelines and integrates them into the reasoning process. By combining high-level and
low-level retrieval, the framework avoids purely opaque embeddings and ensures that retrieved content can be traced to
authoritative references. This property is essential for healthcare robotics, where accountability and safety standards are
strict.

3.8 Interaction Modalities

Finally, it supports two primary interaction modes: VisionQA, where clinicians or operators interact via natural language
and receive immediate answers to visual queries; and SceneGen, where scene graphs or symbolic representations are
exported for integration with robotic task planners or monitoring systems. These modes ensure that the framework can
support both human-in-the-loop decision-making and automated robotic functions, bridging the gap between perception
and action in healthcare robotics.

4 EXPERIMENTS

The evaluation of our system constitutes a critical component of this work, systematically assessing the system’s
capabilities in scene understanding and reasoning, with a particular focus on the medical domain. The evaluation serves
three main objectives: first, to validate technical performance against established multimodal benchmarks; second, to
assess clinical relevance in realistic healthcare scenarios; and third, to identify specific strengths and limitations that
inform both near-term applications and avenues for future improvement. Importantly, the assessment goes beyond
conventional accuracy metrics and provides a multidimensional analysis of the framework’s suitability for real-world
deployment.

To address both general and domain-specific aspects, we adopted a two-phase evaluation strategy.
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4.1 Benchmark Validation using Video-MME Dataset

In the first phase, our framework was benchmarked on the Video-MME dataset [27]], a standardized suite that enables re-
producible comparison across six visual domains and twelve task types. This phase establishes the system’s performance
relative to state-of-the-art multimodal systems, but its general-purpose nature necessitates complementary domain
validation. We compared our framework to established vision—language models including GPT-40, ByteVideoLLM,
and VideoLlaVA, with all systems evaluated in a zero-shot setting. It relied on the Qwen2.5-VL-3B-Instruct model as
backbone, extended through SmolAgent orchestration. Performance was measured using task-specific answer accuracy,
complemented by inference speed as an indicator of computational efficiency.

To contextualize the system’s performance, we establish a baseline using the standard Qwen2.5-VL-3B-Instruct model
in its default configuration. This baseline excludes all architectural enhancements and task-specific optimizations
introduced, providing a reference point for quantifying the benefits of our agentic orchestration, scene graph generation,
and retrieval modules. Both models were evaluated on the complete Video-MME test set (400 questions) under identical
conditions to ensure comparability.

4.2 Clinical Validation on Healthcare Scenarios

In the second phase, we performed a clinical evaluation using a custom dataset of 20 medical videos and 80 annotated
question—answer pairs. The dataset construction began with 40 candidate videos obtained from medical stock footage
platforms [28 29, 30]]. From these, 20 videos were selected after multi-criteria filtering to ensure diversity, clinical
relevance, and visual quality. The final collection covered a range of scenarios, including emergency care, diagnostic
procedures, and common hospital workflows, with each video restricted to a short duration of up to one minute.

To generate the evaluation set, four independent annotators—without involvement in system development—created 80
diverse question—answer pairs. These questions covered a spectrum of task categories, such as instrument identification,
procedure classification, spatial and temporal reasoning, and attribute recognition. Both objective (e.g., counting
tasks) and open-ended questions were included, ensuring evaluation across multiple reasoning modalities. Importantly,
free-form questions prevented the model from exploiting syntactic biases common in templated datasets, instead
requiring genuine contextual reasoning. Prior studies have shown [20] that human-authored datasets reflect real-world
reasoning processes more accurately than automatically generated ones, which motivated our reliance on manual
annotation.

To evaluate model outputs, we combined human-provided ground truth with an LLM-based judgment framework.
Specifically, DeepSeek-V3 [31]] served as a secondary evaluator, comparing our system’s responses against reference
answers. For multiple-choice questions, correctness was judged by direct match, while for open-ended queries, semantic
equivalence was assessed, allowing flexibility in phrasing while maintaining factual correctness. This approach not only
improved scalability and consistency but also enabled granular error analysis through model-generated justifications,
following recent best practices for LLM-assisted evaluation [32].

5 RESULTS

5.1 Benchmark Validation using Video-MME Dataset

On the Video-MME benchmark [27]], our framework achieved an overall accuracy of 70.5% across 400 questions
spanning 12 task categories (see Table[I)). Performance varied by task type: the system excelled in Optical Character
Recognition - OCR (95.7%), information synopsis (95.2%), and attribute perception (77.8%), while more challenging
tasks such as counting (41.1%) and temporal reasoning (50.0%) highlighted areas for improvement. Importantly,
heavily weighted categories such as object recognition (65.4%) and action recognition (60.0%) showed consistent gains
compared to the baseline model, contributing significantly to the overall performance.

When compared against the baseline Qwen2.5-VL-3B-Instruct, our framework achieves a 15% absolute accuracy
improvement, raising performance from 55.0% to 70.0% weighted accuracy. Notably, the improvements are concentrated
in high-impact categories such as Object Reasoning (+23.6%), Information Synopsis (+19.0%), and Attribute Perception
(+16.7%), which collectively contribute substantially to the overall weighted accuracy (see Figure[3). Importantly, these
gains were achieved without increasing model size, as both our system and the baseline use the same 3B-parameter
backbone. This demonstrates that the observed improvements stem from the agentic orchestration and structured
reasoning components rather than brute-force scaling.



A PREPRINT - SEPTEMBER 29, 2025

Table 1: Performance by task type on the Video-MME benchmark.

Task Category Correct/Total Accuracy (%)
Action Reasoning 11/15 73.3
Action Recognition 33/55 60.0
Attribute Perception 42/54 77.8
Counting Problem 21/51 41.1
Information Synopsis 40/42 95.2
OCR Problems 22/23 95.7
Object Reasoning 30/38 78.9
Object Recognition 51/78 65.4
Spatial Perception 8/11 72.7
Spatial Reasoning 11/16 68.8
Temporal Perception 9/13 69.2
Temporal Reasoning 2/4 50.0
Average 282/400 70.5

Action Recognition

Temporal Reaseriing ibyte Perception

Spatial Reagoning OCR\Problems

Object Reasoning

Object |Recognition

Information Synopsis Spatial Perception

Counting Problem poral Perception

Action Reasoning
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Figure 3: Performance by task type on the Video-MME benchmark comparing baseline (Qwen2.5-VL-3B-Instruct).

Our framework also reduced performance variance across tasks (SD = 15.2 vs. 15.8 for the baseline) and improved
lower-quartile accuracy, indicating stronger consistency in mid-tier task types. The skewness of results further showed
that most tasks clustered at higher performance levels, with only a few outliers lowering the overall average.

Domain-level analysis confirmed that our system generalizes well across heterogeneous settings. Highest scores were
obtained in Travel (89.5%), Biology & Medicine (88.9%), and Technology (88.9%), while domains such as Humanity
& History (40.0%) and Magic Show (42.9%) presented greater challenges.

When compared to state-of-the-art models on the Video-MME leaderboard (see Table , our system (70.5%) out-
performed similarly sized open-weight systems such as Video-XL (64.0%) and VideoChat2-Mistral (48.3%), while
approaching the performance of larger models such as ByteVideoLLM (74.4%, 14B parameters). Although proprietary
systems like InternVL2.5 (82.8%) and Gemini 1.5 Pro (81.7%) still lead, it demonstrates competitive efficiency,
delivering nearly 85% of ByteVideoLLM’s performance with only 21% of the parameters.
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Table 2: Performance Comparison on Video-MME Benchmark (short-answer tasks)

Model LLM Parameters (B) Score
InternVL2.5 72 82.8
Gemini 1.5 Pro - 81.7
GPT-40 - 80.0
ByteVideoLLM 14 74.4
Our framework 3 70.5
Video-XL 7 64.0
Video-CCAM 14 62.2
InternVL-Chat-V1.5 20 60.2
VideoChat2-Mistral 7 48.3
Video-LLaVA 7 45.3

Table 3: Performance by question type on the custom medical dataset.

Question Type Number Accuracy (%)
Counting Problems 11 63.6
Action Recognition 17 88.2
Object Recognition 17 88.2
Attribute Perception 19 68.4
Spatial Reasoning 3 66.7
Information Synopsis 9 88.9
OCR Problems 2 50.0
Temporal Reasoning 2 100.0

These findings establish our framework as a parameter-efficient yet effective framework for multimodal scene under-
standing in healthcare-relevant settings, while also highlighting priority areas for improvement in object recognition,
counting tasks, and temporal reasoning.

5.2 Clinical Validation on Healthcare Scenarios

The evaluation of our framework on the curated medical dataset revealed robust performance in clinically relevant
video-based reasoning tasks (see Table [3). Across 80 annotated queries spanning eight question types, the system
achieved an overall accuracy of 78.8% (63/80 correct).

Performance was particularly strong in Temporal Reasoning (100%), Information Synopsis (88.9%), and both Action and
Object Recognition (88.2%), highlighting the system’s capacity to interpret medical workflows, recognize specialized
equipment, and differentiate between clinical roles. These strengths underline the system’s ability to generalize
effectively in realistic healthcare scenarios.

Challenging areas emerged in Counting Problems (63.6%) and OCR tasks (50.0%), where errors often stemmed
from crowded clinical environments, partial occlusions, or unreliable text extraction from video frames. Attribute
Perception (68.4%) and Spatial Reasoning (66.7%) showed moderate performance, suggesting limitations in fine-grained
discrimination of visual details.

Taken together, the custom dataset evaluation demonstrates that our system provides reliable medical scene understand-
ing while revealing actionable limitations. These results complement the general-purpose Video-MME benchmark,
offering domain-specific insights essential for guiding future system improvements in healthcare applications.

6 DISCUSSION

This work introduced a lightweight agentic multimodal framework for clinical scene understanding that combines
vision—language reasoning, structured scene graph generation, and retrieval-augmented question answering. By
validating the system both on the Video-MME benchmark and on a custom medical dataset, we demonstrated that
our framwork can achieve competitive accuracy while producing interpretable outputs that are directly useful for both
clinicians and robotic systems. These findings highlight the potential of parameter-efficient multimodal models to
deliver clinically relevant insights without relying on prohibitively large architectures.
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At the same time, the evaluation also revealed areas where the current design can be further strengthened. The reliance
on iterative agentic reasoning, while valuable for transparency, introduces latency that limits real-time applicability on
long video sequences or constrained hardware. Similarly, the absence of dedicated medical training data means that rare
procedures and specialized instruments are not always recognized with high reliability. The system has not yet been
stress-tested under challenging conditions common in hospitals, such as occlusions, variable lighting, or background
noise. These limitations should not be seen as obstacles but rather as directions for refinement.

Several promising paths emerge from this work. Integrating explicit temporal reasoning into the scene graph could
transform the system from a frame-level interpreter into a system capable of monitoring workflows and anticipating
procedural steps. Exploring multi-agent orchestration offers a way to balance specialized reasoning with collaborative
decision-making, aligning closely with the teamwork dynamics of real clinical practice [33]. Domain adaptation
strategies, supported by carefully curated datasets and incremental learning from real-world interactions, can make the
system more attuned to specific medical contexts while preserving privacy [34,[35]. Equally important, advances in
confidence estimation [§] and sensor fusion will allow the framework to communicate uncertainty more effectively—an
essential quality in high-stakes environments. Finally, closing the loop with interactive clinician feedback promises not
only to improve accuracy over time but also to embed the system naturally into daily healthcare workflows.

Taken together, these insights outline a path toward multimodal Al systems that are interpretable, adaptable, and
collaborative. By supporting both clinicians and robotic assistants, it moves closer to a vision of human—AlI partnership
in medicine where safety, transparency, and efficiency go hand in hand.

7 CONCLUSION

This work introduced a lightweight agentic multimodal framework for video-based scene understanding in healthcare
robotics. By integrating a vision—language backbone, agentic orchestration, structured scene graph generation, and
hybrid retrieval, the system bridges perception and reasoning in complex medical environments. Quantitative and
qualitative evaluations demonstrate that the system achieves competitive benchmark performance while offering domain-
specific interpretability, making it suitable for both research and clinical exploration. While still a prototype, our
approach underscores the potential of agentic multimodal Al to support safe and transparent human—robot collaboration.
In addition, our work illustrates how interpretable agentic multimodal Al can jointly support clinicians and robotic
systems, contributing to the development of more trustworthy and collaborative decision support in healthcare.
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